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Abstract

We analyze the incentives behind wholesale price discrimination in a vertically

related market with heterogeneous consumer search. By engaging in wholesale price

discrimination, a manufacturer creates asymmetries between ex-ante symmetric re-

tailers and indirectly screens searching consumers. Low-cost retailers sell to a dis-

proportionate share of low search cost consumers, giving them stronger incentives to

compete; high-cost retailers also lower their margins given they have a smaller cus-

tomer base as low search cost consumers leave. We show that this pricing practice

creates more competition in the retail market and increases manufacturer’s profit,

but leads to lower consumer welfare. Without commitment, it is not an equilib-

rium outcome, however. Legislation requiring recommended retail prices to attract

positive sales serves as a commitment device enabling the manufacturer to engage

in price discrimination. Without legislation aiming to protect them, consumers are

better off.
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1 Introduction

Empirical studies have found that wholesale price discrimination is practiced in many im-

portant markets, including gasoline markets (Hastings (2009)) and supermarkets (Villas-

Boas (2009)). This price discrimination practice used by manufacturers to charge differ-

ent prices to different retailers is an important concern in many antitrust cases as well. 1

This paper provides a new theory of why manufacturers with market power may engage

in wholesale price discrimination and analyzes its welfare implications. The crucial fea-

ture of our theory is that retail markets are characterized by consumer search and that

consumers differ in their search cost. By setting different wholesale prices to different re-

tailers, the manufacturer stimulates search and creates a more competitive retail market,

which for given wholesale prices, boosts his profits.

Under wholesale price discrimination, a manufacturer charges a low wholesale price to

some retailers and a high wholesale price to others, resulting in low and high retail prices

in the downstream market. Expecting some price dispersion, without knowing which

retailer charges lower prices, consumers’ initially search at random, but depending on

their search cost, they will follow different search paths after their first search. Wholesale

price discrimination effectively is a mechanism to (indirectly) screen searching consumers:

observing a high retail price at their first search low search cost consumers continue

to search, while others will buy immediately. As a consequence, retailers do not face the

same composition of search costs among their consumers; the demand of low cost retailers

consists of a relatively larger share of low search cost consumers. As low search cost

consumers are more price sensitive, they will induce more competition between low cost

retailers. In addition, because of the increased competition among the low cost retailers,

consumers with higher search cost may also find it attractive to continue searching, forcing

the high cost retailer also to lower its margins. Thus, both low and high cost retailers

may have lower margins under wholesale price discrimination. As lower retail margins,

ceteris paribus increase manufacturer profit, the manufacturer may consider to engage in

wholesale price discrimination to increase profits.

Whether or not a manufacturer actually engages in wholesale price discrimination

depends on the extent to which he can commit himself to the wholesale prices he sets.

In industries that have relatively stable cost and demand patterns, a manufacturer may

commit by setting long-term wholesale contracts with his retailers. Under commitment,

1See, e.g., the claim of Games People Play, a retailer for golf equipment in the US, against Nike, ruled

by the federal district court in Beaumont, Texas in February 2015 (Games People Play, Inc. v. Nike, Inc.;

case number 1:14-CV-321), or, earlier cases such as the decision on the European sugar industry in 1973

where the Commission ruled that, “the granting of a rebate which does not depend on the amount bought

[...] is an unjustifiable discrimination [. . . ]” (Recital II-E-1 of Commission decision 73/109/EC), or the

the Michelin I judgement where the European Commission in 1981 contested the alleged discriminatory

nature of wholesale prics (Recital 42 of Commission decision 81/969/EEC).
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we show that wholesale price discrimination increases the manufacturer profits and reduces

retail profits and consumer surplus. In other industries, it may be difficult to commit

to charging different retailers different prices. Without commitment, wholesale price

discrimination cannot be sustained as an equilibrium outcome as the manufacturer can

increase his profits by secretively deviating to an individual retailer. The reason is that

without commitment wholesale price discrimination can only be an equilibrium when the

manufacturer makes identical profits over all retailers (those that received a low and a high

wholesale price). If not, the manufacturer is better off by charging the same wholesale

price to all retailers. This equal profit condition is inconsistent with the other equilibrium

conditions that the low and high wholesale price have to satisfy.

For markets where the manufacturer cannot commit to his wholesale prices by means

of long-term contracts, we look at the effect of recommended retail prices and the regula-

tion imposed by the Code of Federal Regulations used by the Federal Trade Commission.

Recommended retail prices are non-binding recommendations of manufacturers at which

prices retailers should sell their product. As retailers are free to deviate from the rec-

ommendation, an important question is whether these recommendations affect market

behaviour and if so how. Competition authorities have a concern that recommended

retail prices negatively affect competition through their impact on consumers. In the

United States, for example, the Code of Federal Regulations used by the Federal Trade

Commission states that “to the extent that list or suggested retail prices do not in fact

correspond to prices at which a substantial number of sales of the article in question are

made, the advertisement of a reduction may mislead the consumer”. In this paper, we

argue that despite its intention to protect consumers, the Code of Federal Regulations

may actually aversely affect them and that it is not in the interest of consumers (or total

surplus) to require that a substantial number of sales is sold at the recommended retail

price.

The importance of consumer search is implicitly recognized by the Code of Federal

Regulations where it rightfully observes that a recommended retail price may also be

addressed to consumers (and not only to retailers) and may affect consumers’ purchasing

behaviour. What the Code does not envisage, however, is that the restrictions imposed

effectively facilitate manufacturers to partially commit to wholesale price discrimination

as follows. The manufacturer may announce the price the high cost retailer finds it

optimal to sell her product as the recommended retail price. Given the announcement,

she should make sure that at least some products are sold at this price and thus she is not

free to deviate and sell to all retailers at the lower wholesale price that generates more

profits for him. We show that once this possible deviation is eliminated, wholesale price

discrimination can be sustained as an equilibrium outcome and that the average wholesale

and retail prices increase, increasing manufacturer profits, but decreasing retailers’ profits

and consumer welfare.
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In summary, we show that a firm (manufacturer) may price discriminate between ex

ante symmetric intermediaries or retailers, because of its competitive effect on a market in

which he is not active himself. In vertical markets, where the retail market is characterized

by consumer search and the manufacturer can commit to wholesale prices, wholesale

price discrimination increases manufacturer profits. In other markets, where long-term

commitment is not feasible, wholesale price discrimination is not an equilibrium outcome.

Recommended retail prices are ineffective if they are not accompanied by a restriction

such as the one imposed by the Code of Federal Regulations. In conjunction with the

regulation, a recommended retail price acts as a commitment device of the manufacturer

that enables wholesale price discrimination. Some retailers follow the recommended retail

price, as this is simply their optimal price given their individual wholesale price. Other

retailers sell at a price below the recommended retail price as they receive lower wholesale

prices. Thus, the observation that recommendations often do not bind in practice as most

products sell at a price below the recommended retail price follows naturally from our

framework.

Apart from these main results, we also make methodological contributions to the

literature on consumer search in vertical markets. Where previous literature (see below

for a discussion) considers a discrete search cost distribution with a fraction of shoppers

and non-shoppers having identical search costs, we have results for generalized search

cost distributions. Unlike the literature, this also allows us to have a general existence of

equilibrium results even for uniform wholesale pricing.

There are several branches of the literature to which this paper contributes. First,

there is a literature on price discrimination in intermediate goods markets. The seminal

papers in this literature, Katz [9], DeGraba [4] and Yoshida [16], have built arguments in

favour of banning wholesale price discrimination. The basic starting point in these papers

is that downstream firms differ in their efficiency levels. An unconstrained monopolist

manufacturer may then choose to charge higher wholesale prices to more efficient firms.

Uniform pricing constraints the monopoly power of the manufacturer increasing total

surplus. Inderst and Valleti [7] and O’Brien [12] show that a ban on discrimination may

have the opposite effect if the assumption of an unconstrained manufacturer is relaxed.

To distinguish our theory from this literature, we consider a setting where all retailers

are ex ante symmetric and all consumers have identical demand.2 The novelty of our

paper is that in many markets consumers must engage in costly search to get to know

market prices. By taking into consideration information frictions regarding retail prices,

a manufacturer may purposefully create asymmetries between retailers by engaging in

wholesale price discrimination.

2This is also the reason why we prefer to speak of wholesale markets and not of intermediate goods,

or input markets. Wholesale markets stress that the only difference between retailers may be caused by

manufacturers selling at different prices.
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Second, there is a recent literature on vertically related industries with consumer

search (Janssen and Shelegia [8], Garcia, Honda, and Janssen [6], Garcia and Janssen [5]

and Asker and Bar-Isaac [1]). Janssen and Shelegia [8] show that markets can be quite

inefficient if consumers search sequentially while not observing the wholesale arrangement

between the manufacturer and retailers. They consider a setting a la Stahl (1989) where

all non-shoppers have the same search cost. Importantly, and in contrast to our paper

with its focus on wholesale price discrimination, the manufacturer always sets the same

wholesale price to all retailers and retailers know this. In addition, unlike Janssen and

Shelegia [8], equilibrium existence is not an issue in our paper due to the general (con-

tinuous) search cost distribution we consider. Garcia, Honda, and Janssen [6] show that

the inefficiency of vertical markets with consumer search continues to hold if there are

many manufacturers and retailers engage in sequential search among these manufacturers.

Garcia and Janssen [5] allows for wholesale price discrimination, but mainly focuses on

how a manufacturer can correlate his wholesale prices to increase profits. By contrast, we

focus on the competitive impact of wholesale price discrimination by changing the search

cost composition of different retailers. In contrast to Garcia and Janssen [5], low cost

retailers will not have monopoly power in our context as the manufacturer offers the low

wholesale price to at least two retailers, maintaning competitive pressure between them.

Asker and Bar-Isaac [1] study the impact of minimum advertised prices (MAPs). They see

different potential roles for MAPs with price discrimination as one of them. Their model

of price discrimination is very different from ours, however. They study a market where

consumers have different valuations and the consumer search cost distribution is ”Varian

(1980) like”, where some consumers compare all prices and others always buy at the first

store they visit (as their search cost is prohibitively high). The rationale for wholesale

price discrimination in their paper is therefore close to the traditional role for price dis-

crimination in extracting surplus from consumers with different valuations. In contrast,

in our model consumers have identical valuations and wholesale price discrimination is a

way to screen consumers with different search cost. By imposing wholesale price discrim-

ination the manufacturer endogenously determines how many consumers search beyond

the first firm. We therefore have a purely informational story of price discrimination.

Third, there is a recent literature explaining how non-binding recommended retail

prices may affect market behavior.3 Buehler and Gärtner [2] and Lubensky [10] use

a framework where recommended retail prices are used by the manufacturer to signal

production cost. Buehler and Gärtner [2] see recommended retail prices as communication

devices between a manufacturer and its retailers and where recommended retail prices are

part of a relational contract enabling the manufacturer and retailer to maximize joint

surplus in a indefinitely repeated setting. Lubensky [10] is closer in spirit to our model as

3Two empirical papers (Faber and Janssen (2008) and De los Santos et. al. (2016)) show that

recommended retail prices do affect market behavior.
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he shows that a manufacturer can use recommended retail prices to signal his production

cost to searching consumers. As both, consumers and the manufacturer, prefer more

search when the manufacturer production cost is low and less search when it is high, the

manufacturer’s recommendation informs consumers via cheap talk of its cost. In contrast

to these papers, uncertainty concerning manufacturer cost does not play a role in our

setting. Thus, one part of our paper may explain that recommended retail prices are used

even in markets where the manufacturer’s cost is stable over time and uncertainty should

not play a big role.

Fourth, in a market where high search cost consumers are less price sensitive than low

search cost consumers, Salop [13] shows that a monopolist who directly sells to consumers

may engage in price discrimination: as low search cost consumers continue to search if

they first encounter a high prices, higher prices attract a disproportionally large fraction

of consumers with higher search cost, who (by assumption) are also less price-sensitive.

As it is optimal for the monopolist to charge higher prices to consumers who are less

price sensitive, the monopolist may indeed want to screen consumers with different search

cost. Unlike our purely informational theory of price discrimination, Salop [13] follows the

classical idea of price discrimination as distinguishing between consumers with different

valuations. In addition, his argument is based on the assumption that the monopolist

is committed to charging prices according to a price distribution and that any deviation

from this distribution is observed by consumers. It is difficult to see, however, how

consumers may observe a price distribution, while maintaining the assumption underlying

the search cost literature that the consumer does not know the prices the firm sets. By

studying a vertical supply chain, our paper, in contrast, can make a distinction between

a manufacturer commiting on wholesale prices to retailers, while consumers search for

retail prices. We also show in this paper that a limited form of commitment towards is

suficient to make our argument work.

Finally, while most papers in the search literature assume at most two different levels

of search cost (see, e.g., Stahl [14]), there do exist some papers that consider more general

forms of heterogeneity in consumers’ search costs, such as Stahl [15], Chen and Zhang

[3] and Moraga-González, Sándor, and Wildenbeest [11]. In contrast to these papers,

however, we focus on vertically related industry structures and this paper is the first to

consider general forms of search cost heterogeneity in vertically related industry structures.

One of the results of this literature is that there exists a continuum of equilibria if the

measure of consumers with zero search cost is zero. We show that this is not true if the

manufacturer can commit to wholesale prices, whereas it continues to be true in the last

part of of our paper where we consider partial commitment through regulations.

The remainder of this paper is organized as follows. In the next section, we present the

details of the model we consider. The impact of wholesale price discrimination is discussed

in Section 3. Section 4 discusses the commitment case under both uniform pricing and

6



wholesale price discrimination. Uniform pricing and wholesale price discrimination under

the non-commitment case are discussed in Section 5, where we discuss the non-existence

of an equilibrium with wholesale price discrimination. When the manufacturer cannot

commit to his wholesale prices, we also discuss the issue of multiplicity of equilibria.

In both sections, we first provide analytic results for the case where the search costs

vanish, followed by a numerical analysis for the linear demand case that allows us to show

the robustness of our theoretical results. In Section 6, we analyze the implications of

imposing that some sales take place at the list price, as the Code of Federal Regulations

does. Finally, in Section 7 we conclude and discuss possible extensions.

2 The Model

We focus on a vertically related industry with a monopolist manufacturer in the upstream

market supplying a homogeneous good to N ≥ 3 retailers.4 The manufacturer’s produc-

tion costs are normalized to zero. In principle the manufacturer can charge a different

wholesale price wi to every retailer i so that formally the manufacturer’s strategy is a

tuple (w1, w2, ..., wN). We will focus on two types of equilibria: (i) in a uniform pricing

equilibrium the manufacturer chooses wi = w∗, whereas in an equilibrium with price dis-

crimination the manufacturer chooses two prices w∗L and w∗H , with w∗L < w∗H , and charges

some retailers the low and others the high wholesale price. Retailers take their wholesale

price as given and do not have other costs except for the wholesale price paid to the

manufacturer for each unit they sell. Observing only their own wholesale price retailers

compete in prices and choose their retail strategy p(w).5

There is a unit mass of consumers, each demanding D(p) units of the good if they

buy at price p. We make standard assumptions on the demand function so that it is

well-behaved. In particular, there exists a p such that D(p) = 0 for all p ≥ p and the

demand function is continuously differentiable and downward sloping whenever demand

is strictly positive, i.e., D
′
(p) < 0 for all 0 ≤ p < p. For every w ≥ 0, the retail monopoly

price, denoted by pM(w) is uniquely defined by D
′
(pM(w))(pM(w)− w) +D(pM(w)) = 0

and D′′(p)(p − w) + 2D′(p) < 0. Note that for w = 0, this condition gives that the

profit function of an integrated monpolist is concave. We denote by pM(wM) the double

marginalization retail price, which arises in case there would be a monopoly at both levels

of the supply chain.

In order to observe prices consumers have to engage in costly sequential search with

perfect recall. Consumers differ in their search cost s. Search costs are distributed on

the interval [0, s] according to the distrbution function G(s), with G(0) = 0. We denote

4To study the effects of wholesale price discrimination, it is important there are at least three retailers

so that there are at least two retailers that get the lowest wholesale price and there is still some competition

among these retailers.
5Whenever there is no confusion possible, we drop subscripts i.

7



by g(s) the density of the search cost distrbution, with g(s) > 0 for all s in the interval

[0, s] and −∞ < g′(s) < ∞. In numerical examples, we consider G(s) to be uniformly

distributed. For most part of the analysis, it does not matter whether or not the first

search is costly, and we proceed assuming the first search is for free so that we do not

have to consider the participation constraint of consumers (which for small enough s will

always be satisfied). As consumers are not informed about prices before they search, an

equal share of consumers visits each retailer at the first search.

The timing is as follows. First, the manufacturer sets wholesale prices to all firms.

Second, given the information available to them an individual retailer i sets her retail price

pi, where i = 1, ..., N . Each retailer observes only her own wholesale price and does not

observe the wholesale prices the manufacturer offers to other retailers. Finally, consumers

sequentially search for retail prices. Consumers do not observe wholesale prices (see, e.g.,

Janssen and Shelegia [8]). The difference between the case where the manufacturer can

and cannot commit is that in the latter case, but not in the former, the manufacturer may

deviate from the wholesale prices consumers and other retailers expect. The commitment

case can either be viewed as a theoretical benchmark, or as a stylized description of

markets where the manufacturer is committed to long-term contracts, where retailers

may learn the retail prices their competitors set.6 Generally speaking, when analyzing

the no commitment case, we look for a pure strategy Perfect Bayesian Equilibrium (PBE),

where on the equilibrium path, retailers’ and consumers’ beliefs are updated using Bayes’

rule, while we consider out-of-equilibrium beliefs that are passive. We will define the

equilibrium notion in more detail in the beginning of Section 5 when we analyze this case.

3 The retail market

As explained in the Introduction, the main reason why a manufacturer may want to price

discriminate between different retailers is to create a more competitive retail market.

In this section, we explain in detail the mechanism by means of which this works and

characterize the behaviour of consumers and retailers. Passive beliefs on the part of

consumers imply that if a consumer observes an unexpected retail price, she believes

that the retailer that she has visited has deviated and that all other retailers charge

their equilibrium prices. In case of wholesale price discrimination when consumers expect

different retail prices to prevail we consider that if she observes a price in a neighborhood

of one of the prices she expected, then the consumer believes that the deviation comes

from a retailer that was expected to set a price that is closest to the observed price.

6In a study of first-mover advantage, Bagwell (1995) has shown that a player’s ability to commit

is equivalent to the observability of his actions. In our world with a manufacturer, multiple reailers

and many consumers, the issue of commitment is more subtle as the manufacturer may commit to an

individual retailer, or to retailers in gemeral, without committing to consumers.
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As a benchmark, consider first the case of uniform pricing where all retailers are

expected to be charged the same wholesale price w∗.7 Let p∗(w∗) denote the equilibrium

price charged by all retailers (which is the retail price consumer expect). To determine

the equilibrium retail price, we need to investigate how a retailer’s demand depends on

his price, which in turn depends on how consumers’ search behaviour depends on a price

deviation. If a consumer buys at a deviation price p̃ > p∗, he gets a surplus of
∫ 1

p̃
D(p)dp.

Using passive beliefs, a consumer with search cost s continues to search for the equilibrium

price p∗(w∗), if8

s <

∫ 1

p∗(w∗)

D(p)dp−
∫ 1

p̃

D(p)dp.

0 s̄∫ p̃

p∗(w∗)

D(p) dp

Fig 3.1 Share of consumers that buy at the deviating retailer

Thus, of all consumers who visit a retailer deviating to a price p̃ > p∗(w∗) a fraction

1−G
(∫ p̃

p∗(w∗)
D(p)dp

)
will continue buying from him. Therefore, the deviating retailer’s

profit in a uniform pricing equilibrium equals:

πr(p̃, p
∗) =

1−G
(∫ p̃

p∗(w∗)
D(p)dp

)
N

D(p̃)(p̃− w∗).

A retailer will never set a price larger than the retail monopoly price as he can always

guarantee himself the retail monopoly profits (by lowering his price). Even if he does not

attract additional consumers by doing so, he would make more profits over consumers that

anyway will visit him. Thus, we must have that in equilibrium D
′
(p∗)(p∗−w∗)+D(p∗) ≥ 0.

Maximizing retail profits and making use of the equilibrium condition p̃(w∗) = p∗(w∗),

yields that p∗ ≤ pM(w∗) and

− g(0)D2(p∗)(p∗ − w∗) +D
′
(p∗)(p∗ − w∗) +D(p∗) = 0. (1)

7Here, we consider that consumers have correct beliefs concerning the wholesalesale price retailers

face. In section 5, where we analyze non-commitment, we allow for the possibility that a retailer knows

that the manufacturer has deviated from the wholesale price consumers expect.
8Note that as the first search is for free, all consumers become active and search for prices. Alterna-

tively, if the first search is also costly, then all consumers remain active if the expected surplus of being

active, given by
∫ 1

p∗
D(p)dp, is larger than the maximal search cost s.
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Note that the equilibrium retail price is independent of the number of active retailers.9

Note also that, in principle, from the perspective of the retailers the first-order condition

can be satisfied with a weak inequality as retailers will never have an incentive to lower

their price as long as p∗ ≤ pM(w∗), given that consumers search for lower prices and do

not observe these prices until at the retailer in question, retailers do not attract more

consumers by lowering their prices. However, in the vertical model taking the incentive

of the manufacturer into account, it can never be the case that (1) holds with strict

inequality. The reason is that in that case the manufacturer could increase profits by

increasing her wholesale price. This will always be profitable as retailers will not adjust

their retail price and therefore the manufacturer demand will not be affected.

To illustrate the impact of wholesale price discrimination on the retail market, consider

the situation where a manufacturer is expected to set a wholesale price of w∗L to N − 1

retailers and w∗H to 1 retailer. In the main part of the paper this is also the setting

we consider and in subsequent sections we will explain why. A first effect on consumer

search is that the low search cost consumers who happen to encounter the high cost

retailer setting p∗H will continue to search for lower retail prices. In particular, defining

ŝ =
∫ p∗H
p∗L

D(p)dp, all consumers who happen to observe p∗H at their first search and have a

search cost s < ŝ continue to search.10 More generally, If a consumer observes a price pH

in the neighbourhood of p∗H , then he will continue to search if his search cost is such that

s < ŝ+

∫ 1

p∗H

D(p)dp−
∫ 1

pH

D(p)dp.

9This does not imply, however, that if retailers and consumers would expect that some retailers are

foreclosed by the manufacturer (for example by receiving such a high wholesale price that they cannot

effectively compete), while all the remaining retailers receive identical wholesale offers, retailers would

behave in exactly the same way as in the case when all N retailers would receive the same wholesale price.

The reason is that in the above analysis, it is taken for granted that if a consumer continues to search

he will always find the equilibrium price on the next search. This will not be the case under foreclosure,

however, as in that case the chance of finding a low retail price will be smaller and consumers will be

more reluctant to search. This gives retailers more market power. Thus, a manufacturer will not want to

foreclose retailers from the market. Wholesale price discrimination is, as we will see in the next Section,

more subtle than foreclosure.
10If there would be m∗ < N − 1 retailers getting a low wholesale price, then the critical search cost

value ŝ can be defined as:(
m∗

N − 1
+
N −m∗ − 1

N − 1

m∗

N − 2
+ ..+

N −m∗ − 1

N − 1

N −m∗ − 2

N − 2
· .... · 1

)
ŝ =

∫ p∗H

p∗L

D(p)dp

This expression is more complicated as there is a probability that the consumers will not immediately

encounter p∗L on her next search. The following is true, however: if a consumer continues to search after

the first observation of p∗H he will certainly continue to search after observing p∗H each subsequent time

as the chance of observing p∗L on the next search round becomes higher. This gives the expression above.
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1
3
g(s)

0 ŝ
s

s̄

g(s)

1
2
g(s)

0 ŝ
s

s̄

g(s)

Fig 3.2 Different demand compositions of the high and low cost retailers for N=3.

Therefore, the profit of a retailer who has observed a wholesale price wH in the neigh-

bourhood of w∗H and sets a price pH in the neighbourhood of p∗H will be:

πHr (pH , p
∗
L;w∗H) =

1

N

(
1−G

(∫ pH

p∗L

D(p)dp

))
D(pH)(pH − w∗H). (2)

A second effect of wholesale price discrimination on consumer search comes from con-

sidering consumers who have observed a price pL, in a neighbourhood of p∗L, on their first

search. Believing such a deviation comes from a retailer that received a wholesale price

of w∗L consumer are less inclined to continue to search compared to when the manufac-

turer does not engage in wholesale price discrimination as now, there is a probability that

consumers will encounter an even higher retail price if they continue to search. As low

search cost consumers will continue to search until they find the lowest expected price

p∗L in the market, the benefit of search equals
∫ pL
p∗L
D(p)dp, whereas the expected cost of

search equals N−2
N−1

s + 1
N−1

2s = N
N−1

s. Thus, these first time consumers encountering a

price pL will continue to search if their search cost is s < N−1
N

∫ pL
p∗L
D(p)dp.

For a low cost retailer contemplating a deviation to a price pL > p∗L there is, however,

an important third, indirect effect of wholesale price discrimination on consumer search.

Due to the fact that low search cost consumers continue to search if they observe p∗H
on their first search, low cost retailers will serve a disproportionately larger share of low

search cost consumers. Therefore, they are losing relatively more consumers if they deviate

and increase their prices.

Combining the second and third effect, when deviating to a price pL with p∗L < pL <

p∗H , a low cost retailer’s profit function will be:

πLr (pL; p∗L, p
∗
H , w

∗
L) =

1

N

1−G

(
N − 1

N

∫ pL

p∗L

D(p)dp

)
+
G
(∫ p∗H

pL
D(p)dp

)
(N − 1)

D(pL)(pL−w∗L).

(3)

Thus, there are two important differences in this profit function relative to the uniform

pricing case. First, the term N−1
N

in the first G(s) function reflects the second effect
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described above. Second, the last term in the square brackets, reflects the third indirect

effect of low cost retailers having a disproportionately large share of low search cost

consumers.

The different effects of wholesale price discrimination on consumer search have im-

portant implications for competition in the retail market as can be seen from taking the

first-order conditions of the profit function of the different retailers. Taking the first-order

condition of (2) with respect to pH and substituting pH = p∗H yields

− g(ŝ)D2(p∗H)(p∗H − w∗H)

1−G (ŝ)
+
[
D
′
(p∗H)(p∗H − w∗H) +D(p∗H)

]
= 0. (4)

Comparing this FOC condition with that in (1) of the uniform pricing equilibrium con-

dition from the previous Section reveals that ceteris paribus the only difference is that

the first term is multiplied by the reverse hazard rate g(ŝ)
1−G(ŝ)

instead of by g(0). As this

first term is negative, ceteris paribus this implies that high cost retailers will have lower

margins if, and only if g(ŝ)
1−G(ŝ)

> g(0). This is, for example, the case if the search cost

distribution has an increasing reverse hazard rate (as, for instance, the uniform distribu-

tion). This is one of the important effects of wholesale price discrimination discussed in

the Introduction: as (some) competitors have lower retail prices, it is more attractive for

consumers to continue searching if they have visited a high cost retailer, which imposes a

more severe competitive constraint on these retailers. High cost retailers have fewer buy-

ing customers (represented by 1 − G (ŝ)) and an upward deviation from the equilibrium

price will cause g(ŝ) consumers to leave relative to g(0) in the uniform pricing equilibrium.

In relative terms, the impact on the retailer of consumers leaving is larger.

Taking the first-order condition of (3) with respect to pL yields

0 =

1−G

(
N − 1

N

∫ pL

p∗L

D(p)dp

)
+
G
(∫ p∗H

pL
D(p)dp

)
(N − 1)

 [D′(pL)(pL − w∗L) +D(pL)]

−

N − 1

N
g

(
N − 1

N

∫ pL

p∗L

D(p)dp

)
−
g
(∫ p∗H

pL
D(p)dp

)
N − 1

D2(pL)(pL − w∗L),

which evaluated at the equilibrium value yields

−

(
(N−1)2

N
g (0) + g(ŝ)

)
D2(p∗L)(p∗L − w∗L)

(N − 1) +G(ŝ)
+
[
D
′
(p∗L)(p∗L − w∗L) +D(p∗L)

]
= 0. (5)

Comparing this FOC with that in (1) of the uniform pricing equilibrium reveals that

ceteris paribus the only difference is that the first term is multiplied by
(N−1)2

N
g(0)+g(ŝ)

(N−1)+G(ŝ)

instead of g(0). The easiest way to compare these to terms is for the uniform distribution

12



where g(s) is constant. In that case, the term in (5) is larger than g(0) if, and only if,

G(ŝ) < 1/N. Especially, when N is small, this term may create an important difference

and illustrates an important effect of wholesale price discrimination as discussed in the

Introduction: even though low search cost consumers may be less inclined to continue to

search (as they may not directly find another low cost retailer), the fact that low cost

retailers are more frequently visited by low search cost consumers outweighs this effect.

The above discussion shows that ceteris paribus retail margins may be lower because

of wholesale price discrimination. Ceteris paribus here mainly is a clause relating to the

wholesale prices: the first-order conditions are similar to the first-order retail condition

under uniform pricing if evaluated at the same wholesale price. The important question

then is how these changes in the first-order retail price conditions impact on the incentives

of the manufacturer to set his wholesale prices. It should be clear that it is not optimal for

the manufacturer to induce an equilibrium where ŝ ≥ s. If that would be an equilibrium,

retailers receiving a high wholesale offer reacting with a retail price p∗H would be effectively

foreclosed from the market, giving the remaining retailers more market power as the

only effect that remains would be the second effect on consumer search discussed above.

Thus, in the remaining of this paper, we will consider equilibria with wholesale price

discrimination where 0 < ŝ ≤ s.

We will now first analyze the manufacturer’s behaviour when he can commit to the

wholesale prices charged (Section 4) and then the case where he cannot (Section 5).

4 Commitment

In this section, we compare uniform pricing to wholesale price discrimination in case the

manufacturer is able to commit to the wholesale prices it sets. We start with the easiest

case, which is the benchmark of uniform pricing.

4.1 Uniform pricing

Under full commitment, the manufacturer chooses a wholesale price w that maximizes

his profit π(w) = wD(p(w)), where p(w) is implicitly defined by (1). Thus, with uniform

pricing and full commitment the wholesale price w is set such that

δπ

δw
= wD′(p(w))

δp∗

δw
+D(p(w)) = 0. (6)

To determine the optimal wholesale price we still have to evaluate ∂p∗

∂w
. From (1) it follows

that:

−2g(0)D(p∗)(p∗−w)
∂p∗

∂w
−g(0)D2(p∗)(

∂p∗

∂w
−1)+

((
D
′′
(p∗)(p∗ − w) +D′(p∗)

) ∂p∗
∂w

+D′(p∗)(
∂p∗

∂w
− 1)

)
= 0,

13



so that

∂p∗

∂w
=

D′(p∗)− g(0)D2(p∗)

−2g(0)D(p∗)D′(p∗)(p∗ − w)− g(0)D2(p∗) + (D′′(p∗)(p∗ − w) + 2D′(p∗))
.

If the search cost distribution becomes concentrated close to 0, in the limit g(0) has

to become very large. From (1) it can be seen that as g(0) → ∞, p∗(w∗) → w∗. This

is quite intuitive: when all consumers have arbitrarily small search cost, retailers do not

have any market power and their retail margins should become arbitrarily small as well.

If g(0) →∞ and p∗ → w∗, the expression for ∂p∗

∂w
reduces to 1 so that the wholesale price

is equal to that of an integrated monopolist.

The following Proposition summarizes this result and analyzes the limiting behavior

of the wholesale and retail price in a neighborhood of s = 0.

Proposition 1 Consider s → 0. If the manufacturer commits to a uniform wholesale

price, then the uniform retail and wholesale prices converge to p∗ = w∗, where w∗ solves

w∗D
′
(w∗) +D(w∗) = 0. Moreover, we have that dp∗

ds
= 0 and dw∗

ds
= − 1

D(p∗)
.

From Proposition 1 it follows that in a neighbourhood of s = 0 we have that

dΠM

ds
=
dw∗

ds
D(p∗) + w∗D′(p∗)

dp∗

ds
= −1.

For search cost distributions that are not concentrated around 0, it is difficult to obtain

analytic results. The general expressions allow us to solve numerically, however, for

different demand functions and search cost distributions. To be able to compare these

numerical results across the different environments we analyze in the paper, we focus on

the case of linear demand D(p) = 1−p and a uniform search cost distribution g(s) = 1/s.

The figure below clearly shows how retail and wholesale prices react to an increasing

support of the search cost distribution: the retail price is increasing, while the wholesale

price is decreasing: where retailers have more market power because of the increasing

importance of search costs, the manufacturer tries to let demand not decrease to sharply

by lowering the wholesale price. As a result, retail profits are increasing, the manufacturer

profit is decreasing and consumers are worse off.

14



Fig 4.1. Uniform retail and wholesale prices for different values of s

4.2 Wholesale Price Discrimination

When engaging in wholesale price discrimination, the manufacturer generally faces two

questions: (i) how many different wholesale prices to set and (ii) how many retailers will

be offered which price? Denoting the lowest wholesale price by wL, it is clear that in

equilibrium at least two retailers should get the lowest price. The reason is that if one

retailer knows it is getting the lowest price, then it does not face any competition from

other retailers up to the second lowest equilibrium retail price in the market. Therefore,

this retailer would then set a retail price (almost) equal to the second lowest equilibrium

retail price in the market, giving the manufacturer an incentive to increase the lowest

wholesale price. Thus, to keep a competitive constraint on the retailers receiving the

lowest wholesale price, there should be at least two retailers being offered wL. This is

why, for wholesale price discrimination to make sense we require that N ≥ 3. If N = 3,

wholesale price discrimination implies that two retailers should get the lower wholesale

price wL and one should get a higher wholesale price wH . For N > 3, the question how the

equilibria are affected by how many retailers get the lowest wholesale price is nontrivial.

Thus, we simply focus on showing that wholesale price discrimination in its more simple

form where the manufacturer chooses to set one low wholesale price wL to N − 1 retailers

and another high wholesale price wH to 1 retailer increases manufacturer profits. Retailers

will react to these prices by setting (possibly) different retail prices. When there is no

confusion we use the notation p(wi), or simply pi, i = L,H, to denote price reactions

(or prices) of retailers who have received a low or a high wholesale price. The question

whether the manufacturer can further increase profits by setting more than two different

wholesale prices is left for future research.

Thus, the manufacturer will choose two different wholesale prices, wL and wH , to

directly maximize his profit:
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π(wL, wH) =
1

N
[1−G(ŝ)]wHD(p∗H(wH)) +

N − 1 +G(ŝ)

N
wLD(p∗L(wL))

Under commitment, the manufacturer takes into account how retail prices change in

reaction to changes in wL and wH . To derive these reactions, we have to consider that

each of the retail first-order conditions (4) and (5) stipulate that a retailer’s reaction to its

own wholesale price depends on the other retail price they expect through its impact on

ŝ. That is, (5) describes a relationship where pL depends on wL and pH and (4) describes

a relationship where pH depends on wH and pL. Thus, for every fixed pair of wholesale

prices (wL, wH) we can solve for the retail reactions by simultaneously solving (4) and (5).

In this way, the retail equilibrium reactions are given by p∗L(wL, wH) and p∗H(wL, wH), i.e.,

both retail prices depend directly on the corresponding wholesale price, but also indirectly

on the other wholesale price, through its influence on the other retail price.

Using these reactions, we can solve the manufacturer’s profit maximization problem

and arrive at the following Proposition.

Proposition 2 Consider s→ 0. If the manufacturer commits to wholesale price discrim-

ination selling to N − 1 retailers at a low wholesale price wL and to 1 retailer at a high

wholesale price wH , then optimal wholesale prices w∗L and w∗H and the corresponding retail

prices p∗L and p∗H converge to w∗ and p∗, with p∗ = w∗ solving w∗D
′
(w∗) + D(w∗) = 0.

Moreover, we have that

d (p∗L − w∗L)

ds
=

(
N

2 (N2 + 1) (N2 −N + 1)
+

N (2N − 1)

(2N2 −N + 2)

)
1

D(p∗L)
,

d (p∗H − w∗H)

ds
=

(
− 1

2 (N2 + 1)
+

2N2 −N + 1

2N2 −N + 2

)
1

D(p∗L)
,

and the fraction of consumers that continue to search after visiting the high cost retailer,

G(ŝ) =
∫ p∗H
p∗L

D(p)dp/s is given by

D(p∗H)

(
dp∗H
ds
− dp∗L

ds

)
=

4N2 −N + 4

2(N2 + 1)(2N2 −N + 2)
.

It follows that dΠM

ds
> −1.

Thus, even though we cannot pin down the first-order approximations of the individual

retail and wholesale prices, the price differences are such that we can unambiguously claim

that the manufacturer makes more profit by price discriminating. In the previous Section,

we have argued that if G(ŝ) < 1/N the low cost retailers will price more competitively

under wholesale price discrimination than under uniform pricing. From the Proposition,

it is easy to see that the manufacturer prices in such a way that this condition is indeed

fulfilled in a neighborhood of s = 0. Indeed, as
d(p∗i−w∗i )

ds
< 1

D(p∗L)
= d(p∗−w∗)

ds
, i = L,H, it

is clear that both retailers make lower margins under wholesale price discrimination than

under uniform pricing.
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Fig 4.2. Prices under wholesale price discrimination for different values of s

The above result shows that the manufacturer is better off, while retailers are worse

off, because of wholesale price dsicrimination. What is not clear, however, from the above

first-order approximations is whether consumers are better off. The numerical analysis

below, for linear demand and a uniform search cost distribution clearly show, however,

that consumers are also worse off.

Fig 4.3. Manufacturer’s Profit under full commitment for different values of s

17



Fig 4.4. Expected Consumer Surplus under full commitment for different values of s

5 No commitment

We start this Section by defining more precisely the equilibrium notion we use. For

uniform wholesale pricing, we define a Perfect Bayesian Equilibrium (PBE) with passive

out-of-equilibrium beliefs, denoted by (w∗, p∗(w)), as follows:11

Definition 3 A uniform pricing equilibrium is defined by a tuple (w∗, p∗(w)) and an opti-

mal sequential search strategy for all consumers such that (i) the manufacturer maximizes

profits given p∗(w) and consumers’ optimal search strategy, (ii) retailers maximize their

retail profits given the wholesale price they observe, their beliefs about the wholesale prices

observed by other retailers and consumers’ optimal search strategy and (iii) consumers’ se-

quential search strategy is optimal given (w∗, p∗(w)) and their beliefs about retail prices not

yet observed. Beliefs are updated using Bayes’ rule whenever possible. Off-the-equilibrium

path, beliefs are passive, i.e.,

11Off-the equilibrium beliefs are important at two levels, First, consider a consumer who observes a

price p different from p∗(w∗). To determine how a retailer optimally reacts to the wholesale price w∗ it

is important to specify how a consumer reacts to a deviation from p∗(w∗). This in turn depends on

consumer beliefs about prices they believe they will encounter if they continue to search. For example, if

consumers would have symmetric beliefs, they would believe that other retailers would set the same price

if they observe a price p 6= p∗(w∗) and in this case, they will decide not to continue to search. Symmetric

beliefs would give full monopoly power to retailers, independent of the search cost distribution. If, on the

other hand, consumers would have passive beliefs, they would believe that other retailers continue to set

p∗(w∗) if they observe a price p 6= p∗(w∗) and in this case, the consumers with low enough search cost

will continue to search if the price they observe is such that p > p∗(w∗). As consumer search plays an

important role in our analysis, we will adopt passive beliefs when consumers observe an out-of equilibrium

price. For retailers, the issue is a little more subtle, but given the passive beliefs of consumers it seems

most natural to also impose passive beliefs on retailers.
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• Retailers always believe that their competitors received a wholesale price w∗ inde-

pendent of the wholesale price they observed themselves;

• Consumers believe that retailers that are not searched yet have set a retail price

p∗(w∗) independent of the retail price(s) they already observed.

To define passive beliefs for an equilibrium with wholesale price discrimination, we have

to be more specific. First, the equilibrium should specify how many retailers observe the

low and how many retailers observe the high wholesale price. Suppose on the equilibrium

path there are 1 ≤ m∗ ≤ N − 1 retailers that received wL and the remaining N − m∗

received wH . A consumer that observes an on-the-equilibrium path price of p∗(w∗L) believes

that if he continues to search, there is a probability of N−m∗
N−1

, respectively m∗−1
N−1

, that

he will observe a price of p∗(w∗H), respectively p∗(w∗L) on his next search. However, if

the consumer observes an on-the-equilibrium path price of p∗(w∗H) he believes that if he

continues to search, there is a probability of N−m∗−1
N−1

, respectively m∗

N−1
,he will observe a

price of p∗(w∗H), respectively p∗(w∗L) on his next search. That is, even on the-equilibrium

path the beliefs about retail prices on the next search depend on which retail price is

observed.

Consider then a consumer who observes a price p slightly larger than p∗(w∗H). Even

if he has passive beliefs, he has to have a belief whether it was a high or a low cost

retailer that has deviated. We will argue that an equilibrium requires that at prices

p in the neighbourhood of p∗(w∗H) the consumer believes it is a high-cost retailer that

has deviated. The reason is as follows. Suppose that the consumer randomly attributes

the deviation price, or that he attributes it to a low cost retailer. In that case, after

observing a price p > p∗(w∗H) the consumer would become more pessimistic about finding

lower prices on his next search than after observing the equilibrium price p∗(w∗H). More

consumers would then decide not to continue searching if they observe a deviation price

p in the neighbourhood of p∗(w∗H) than after observing p∗(w∗H), but this would make it

profitable to deviate for a high cost retailer. Thus, to have an equilibrium it is necessary

that consumers attribute deviation prices in the neighbourhood of p∗(w∗H) to a retailer

that was supposed to have a high cost. If a consumer observes other out-of-equilibrium

prices, we are more free to specify which retailer the consumer blames for such a price.

Therefore, in the equilibrium definition below we do not restrict these beliefs further than

necessary. Not to have our results be driven by out-of-equilibrium beliefs that favour

retail competition, in the main part of the analysis we will say that consumers attribute

deviations to a low cost retailer if the deviation price p in the neighbourhood of p∗(w∗L) so

that beliefs are continuous in a neighbourhood of both equilibrium prices. For consistency

reasons, we always invoke similar beliefs for retailers.

Thus, we define an equilibrium with wholesale price discrimination as follows.
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Definition 4 An equilibrium with wholesale price discrimination is defined by a tuple

((w∗L, w
∗
H), p∗(w),m∗), with w∗L < w∗H , and an optimal sequential search strategy for all

consumers such that (i) the manufacturer maximizes profits given p∗(w) and consumers’

optimal search strategy, (ii) retailers maximize their retail profits given the wholesale price

they observe, their beliefs about the wholesale prices observed by other retailers and con-

sumers’ optimal search strategy and (iii) consumers’ sequential search strategy is optimal

given (w∗, p∗(w)) and their beliefs about retail prices not yet observed. Beliefs are updated

using Bayes’ rule whenever possible. Off-the-equilibrium path are passive and satisfy at

least the following restrictions:

• A retailer observing a wholesale price w in the neighbourhood of w∗H believes that

m competitors receive a wholesale price of w∗L, while the remaining N − m − 1

competitors receive a wholesale price of w∗H ;

• If consumers observe a retail price p in the neighbourhood of p∗(w∗H) they believe

that a high cost retailer is responsible for setting this price.

5.1 Uniform pricing

To determine the wholesale equilibrium price under uniform pricing without commitment,

we should consider that it is not optimal for the manufacturer to deviate to one retailer

and offer him a wholesale price w (keeping the other retailers at w∗). If the manufacturer

would deviate in this way, his profits would be:

π(w∗, w) =
1

N

[(
N − 1 +G

(∫ p̃

p∗(w∗)

D(p)dp

))
w∗D(p∗(w∗)) +

(
1−G

(∫ p̃

p∗(w∗)

D(p)dp

))
wD(p̃(w))

]
This expression is easily understood. Of the consumers who encounter a price of p̃(w) at

their first search (which is a fraction 1/N of them) a fraction G
(∫ p̃

p∗(w∗)
D(p)dp

)
continues

to search for the equilibrium retail price as their search cost is low enough, while the con-

sumers with a search cost larger than
∫ p̃
p∗(w∗)

D(p)dp will buy at the deviation price p̃(w).

All other consumers buy at the equilibrium price p∗(w∗). A uniform pricing equilibrium

requires that the first-order condition evaluated at w = w∗ is nonpositive:

N
∂π

∂w
= g(0)D(p̃)

∂p̃

∂w
(w∗D(p∗(w∗))− wD(p̃(w)))+

(
1−G

(∫ p̃

p∗(w∗)

D(p)dp

))(
wD

′
(p̃)

∂p̃

∂w
+D(p̃)

)

=

(
1−G

(∫ p̃

p∗(w∗)

D(p)dp

))(
w∗D

′
(p∗)

∂p̃(w∗)

∂w
+D(p∗)

)
≤ 0,

which reduces to

w∗D
′
(p∗(w∗))

∂p̃(w∗)

∂w
+D(p∗(w∗)) ≤ 0. (7)

20



As with the retailer’s maximization problem, the manufacturer does not have an incentive

to lower his wholesale price as long as p∗ < min(pM(w∗), pM(wM)) as retailers will not

follow suit and keep their price at the equilibrium level if this condition is satisfied. In

this case, the only requirement we have to impose is that the manufacturer does not

want to increase his wholesale price and this is what (7) requires. On the other hand,

nothing we have said so far precludes the possibility that the solutions to (1) and (7)

result in such a high wholesale (and retail) price that w∗D(p∗(w∗)) < wMD(pM(wM)).

In this case, it would be optimal, however, for the manufacturer to deviate to wM to all

retailers and they will respond by setting pM(wM). Thus, another necessary condition

that an equilibrium needs to fulfil is that the manufacturer’s equilibrium profit satisfies

w∗D(p∗(w∗)) ≥ wMD(pM(wM)).

To finalize the description of an equilibrium, we still have to evaluate how p̃ changes

with a change in w. For this we need to to determine the best response function of retailers

to non-equilibrium wholesale prices, taking into account that consumers do not observe the

manufacturer deviation and blame the individual retailer for observing a non-equilibrium

price. Given the retailers’ profit function, an individual retailer will react to deviations

in w by setting p̃ such that

−g
(∫ p̃

p∗(w∗)

D(p)dp

)
D2(p̃)(p̃−w)+

(
1−G

(∫ p̃

p∗(w∗)

D(p)dp

))(
D
′
(p̃)(p̃− w) +D(p̃)

)
= 0.

(8)

Thus, the retailer’s best response to any w depends on w itself as well as on the equilibrium

price p∗(w∗) that is expected by consumers. Observe that in this equilibrium the retailer’s

reaction is smaller than the retail monopoly price due to the fact that low search cost

consumers continue to search if a retailer would deviate to this price. In the proof of the

next Proposition we show that if we evaluate this reaction at the equilibrium values we

obtain:

∂p̃(w∗)

∂w
=

D′(p̃)− g (0)D2(p̃)

−g′ (0)D3(p̃)(p̃− w)− 3g (0)D(p̃)D′(p̃)(p̃− w)− 2g (0)D2(p̃) + 2D′(p̃) + 2D′′(p̃)(p̃− w)
,

(9)

where we use p∗ as a short-hand notation for p∗(w∗).

We then have the following result.

Proposition 5 A uniform pricing equilibrium has to satisfy (1), (7), where ∂p̃(w∗)
∂w

is given

by (9) and w∗D(p∗(w∗)) ≥ wMD(pM(wM)).

As in the commitment case, if g(0)→∞ we have that p∗(w∗)→ w∗ . What is perhaps

more surprising is that when g(0)→∞ and p∗ → w∗ we can solve (7) for w∗. It turns out

that when g(0) → ∞ the expression for ∂p̃(w∗)
∂w

reduces to 1
2

so that the wholesale price

is significantly larger than that of an integrated monopolist. The next Proposition states

the result.
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Proposition 6 If s is small enough, an equilibrium exists. If s → 0 any uniform pricing

equilibrium converges to p∗ = w∗, where w∗ solves 1
2
w∗D

′
(w∗) +D(w∗) ≤ 0. Moreover, If

s → 0
dp∗

ds
= − 2D′(p∗)

D(p∗) (wD′′(p∗) + 3D′(p̃))
< 0

and
dw∗

ds
= − wD′′(p∗) + 5D

′
(p̃)

D(p∗) (wD′′(p∗) + 3D′(p̃))
< 0.

In the context of a Stahl (1989) type model, where a fraction λ of consumers (the

shoppers) has zero search cost and the remaining searchers all have the same search cost

s > 0, Janssen and Shelegia (2015) show that if the search cost s is small an equilibrium

exists if, and only if, λ is large enough.12 The first part of the above Proposition says

that if the search cost is small equilibrium existence is not an issue in our model where

consumers have truly heterogeneous search cost and g(s) > 0 for all s ≥ 0and Shelegia

(2015) is due to the discreteness of the search cost distribution.

For general search cost distributions where the search cost does not vanish, it is difficult

to establish general conditions that guarantee existence of equilibrium. The problem is

that both at the retail level one should guarantee that an equilibrium exists for given

w, while at the same time we should guarantee that the manufacturer does not have an

incentive to further squeeze the retailers.

As the monopoly price of an integrated monopolist solves pD
′
(p)+D(p) = 0 the second

part of the Proposition establishes that the manufacturer sets much higher prices than

an integrated monopolist. Even though retail margins are negligible, final retail prices

are also larger than that of an integrated monopolist. This result is akin to Theorem

2 of Janssen and Shelegia (2015) where they show that as s → 0, wholesale and retail

price converge to a price w∗ that solves λw∗D
′
(w∗) + D(w∗) = 0. The main reason

why equilibrium prices are much higher than an integrated monopolist would set is that

in a vertical context, the manufacturer may deviate from the equilibrium price without

consumers noticing it. This makes the manufacturer’s demand much more inelastic to her

own price changes than the demand of an integrated monopolist. Theorem 2 of Janssen

and Shelegia (2015) is obtained for a very special, binary search cost distribution and

for duopoly retail markets only. The above result shows that the intuition is much more

general and holds for any search cost distribution and for any number of retailers. Also,

as in Janssen and Shelegia (2015) an equilibrium only exists if λ is large enough, their

limit prices tend to be (much) smaller than in our model.

In terms of comparative statics, Proposition 6 shows that in a neighbourhood of s = 0

both the wholesale and retail price are decreasing in s. This implies that consumers are

better off if search costs are not vanishing. Janssen and Shelegia (2015) have a similar

result, but only for the case of linear demand. This result indicates that price comparison

12For linear demand, the critical value λ∗ is approximately 0.47.
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websites that effectively reduce search costs and are believed to help consumers getting

better deals may in the end lead to higher prices.

Finally, if an equilibrium exists, there can be multiple equilibria due to the fact that the

the first-order condition of the manufacturer only needs to hold with inequality. We will

mainly focus on the equilibrium where the manufacturer makes most profits. This is the

equilibrium where (7) holds with equality. Equilibria can be indexed by the wholesale price

that retailers and consumers expect the manufacturer to choose. As the manufacturer is

a monopolist, we think it is natural to think that retailers and consumers believe that

the manufacturer chooses the wholesale price that maximizes profits. In addition, as all

equilibrium wholesale prices are typically very high (higher than the monopoly price of

an integrated monopolist), consumers and retailers themselves also benefit from lower

wholesale prices.

Linear Demand

For linear demand D(p) = 1 − p, the equilibrium conditions can be considerably

simplified. The retail equilibrium price in the welfare maximizing equilibrium should

satisfy:

− g(0)(1− p∗)2(p∗ − w∗) + 1− (2p∗ − w∗) = 0, (10)

while, the manufacturer’s equilibrium wholesale price should satisfy

(1− p∗)− w∗ g(0)(1− p∗)2+1

g(0)(1− p∗) (2(1 + w∗ − 2p∗)− (p∗ − w∗)) + 2
= 0. (11)

In the case of linear demand we can explicitly solve for w∗ when g(0)→∞ and p∗ → w∗

as we get that in the limit (11) reduces to 1−w∗−w∗/2 = 0 so that w∗ = 2/3 and expected

consumer surplus converges to 1
18
.13 Using Proposition 6 we have that dp∗

ds
= −2, dw

∗

ds
= −5

and dESC
ds

= (1− p∗)dp∗
ds

= 2
3
.

For larger values of s, we can solve (11) and (10) numerically for different values

of g(0). For general search cost distributions, these values are, however, not necessarily

equilibrium values as the profit functions may not be quasi-concave. For example, if we

would approximate a binary search cost distribution assumed in Janssen and Shelegia

(2015) with a continuous bimodal distribution, we would get a similar non-existence result

as the profit function is not quasi-concave. If the search cost distribution is uniform, we

can, however, guarantee that in the relevant domain wD(p̃(w)) < w∗D(p∗) and that

the retail profit function is quasi-concave so that p̃(w) represent the optimal reaction of

the retailer to a deviation from the wholesale equilibrium price and p∗ is the equilibrium

retail price. In the appendix, we numerically report the profit functions under the uniform

search cost distribution and different values of s.

13If we want to characterize all equilibria, it is clear that w∗ ≥ 2/3, while the condition that deviation

to the double marginalization solution is not optimal results when g(0) → ∞ in the condition that

w∗(1− w∗) ≥ 1/8, or w∗ ≤ 2+
√
2

4 .
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Figure 5.1. shows how the equilibrium retail and wholesale prices change for different

values of s. It also confirms that when s → 0 retail margins are converging to zero and

w∗ → 2/3. Moreover, initially, for small values of s the figure also confirms that both

p∗ and w∗ are decreasing in s. The figure also depicts the retail and wholesale prices

under commitment and confirms that without commitment prices are much higher than

under commitment and that retail prices behave differently in these two cases: under

commitment, uniform retail prices are increasing in the upper bound of the search cost

distribution, while they are decreasing without commitment.

Fig 5.1. Uniform retail and wholesale prices for different values of s

5.2 Wholesale Price Discrimination

We now consider whether the monopolist manufacturer wants to engage in wholesale

price discrimination. We write the manufacturer’s profit function when he deviates both

in terms of wH and and in terms of wL to one low cost retailer. We obtain that:

ΠM =
1

N

(
1 +

1

(N − 1)
G

(∫ pH(wH)

pL(wL)

D(p)dp

)
−G

(
N − 1

N

∫ p̃L(wL)

p∗L

D(p)dp

))
wLD(p̃L(wL))

+
N − 2

N

1 +
G
(∫ pH(wH)

p∗L
D(p)dp

)
(N − 1)

+
G
(∫ p̃L(wL)

p∗L
D(p)dp

)
(N − 1)(N − 2)

+
G
(
N−1
N

∫ p̃L(wL)

p∗L
D(p)dp

)
N − 2

w∗LD(p∗L(w∗L))

+
1

N

(
1−G

(∫ pH(wH)

p∗L

D(p)dp

))
wHD(pH(wH)).

This expression can be understood as follows. First, the term 1
N
G
(∫ pH(wH)

p∗L
D(p)dp

)
in

the last line is the share of consumers that first saw pH(wH) and continues to search as
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they believe that all other firms choose p∗L. The remaining of these consumers buy at the

price pH . Each of the other retailers gets 1/(N − 1) of the consumers that continue to

search. Retailers charging p∗L will sell to these consumers, while a retailer that charges

pL will only get a fraction of these consumers, namely those with relatively higher search

cost. Since they still believe that the other retailers charge p∗L, all consumers with a search

cost smaller than G
(∫ p̃L(wL)

p∗L
D(p)dp

)
continue searching for the remaining retailers and

buy there. Finally, there is a share of consumers that on their first search observes pL. As

the low search cost consumers know there is a probability 1/(N − 1) that if they continue

searching they may end up paying 2s before finding p∗L the ones that find it worthwhile

to continue searching are those that have search costs smaller than N−1
N

∫ pL
p∗L
D(p)dp.

The first-order condition for the manufacturer at w∗H should be satisfied with equality.

The reason is that in an equilibrium with wholesale price discrimination, a fraction G(ŝ) of

consumers continues to search if observing p∗H . If a high-cost retailer would deviate from

the equilibrium price in an upward or downward direction (in reaction to a deviation from

the manufacturer) his demand and that of the manufacturer changes continuously. As

equilibrium requires that such deviations are not optimal, the first-order condition of the

manufacturer at w∗H should also hold with equality. This is not the case, however, for the

manufacturer at w∗L as only upward deviations can be profitable: as consumers will only

find out about the deviations once they have visited the retailer in question, downward

deviations in retail price do not attract additional demand making such deviations always

unprofitable.

In the proof of the Proposition below we show that the first-order conditions with

respect to wL and wH evaluated at the equilibrium wholesale prices yield

w∗LD
′
(p∗L(wL))

∂pL
∂wL

+D(p∗L) ≤ 0, (12)

and

(1−G(ŝ))

[
w∗HD

′
(p∗H)

∂pH
∂wH

+D(p∗H)

]
+ g(0)D(p∗H)

∂pH
∂wH

[w∗LD(p∗L)− w∗HD(p∗H)] = 0,

(13)

where

∂pL
∂wL

=
− D(p∗L)

(p∗L−w
∗
L)

−
[
D′(p∗L)

D(p∗L)
(p∗L − w∗L) + 1

](
3D′(p∗L) +

(N−1
N )

2
g′(0)− g′(ŝ)

N−1

(N−1
N

g(0)+
g(ŝ)
N−1)

)
+D′′(p∗L)(p∗L − w∗L) +− 2D(p∗L)

p∗L−w
∗
L

(14)

and
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∂pH
∂wH

=
−D(p∗H)

−
(

3D′(p∗H) + g′(ŝ)
g(ŝ)

)
(p∗H − w∗H)

[
D′ (p∗H)(p∗H−w

∗
H)

D(p∗H)
+ 1
]

+D′′(p∗H)(p∗H − w∗H)2 − 2D(p∗H)
.

(15)

Apart from these first-order conditions, we also need to guarantee that the manufac-

turer does not have an incentive to give all retailers the same wholesale price, whether it

is w∗L or w∗H . In principle, the manufacturer could set w∗L or w∗H to all retailers without

any retailer noticing it at their price setting stage. To make such deviations unprofitable,

we have to have that the manufacturer makes equal profits over the low and high cost

retailers, thus we need:

w∗HD(p∗H) = w∗LD(p∗L) (16)

in any equilibrium with wholesale price discrimination. Given (16) the first-order condition

with respect to wH can be simplified to

w∗HD
′
(p∗H)

∂pH
∂wH

+D(p∗H) = 0. (17)

The next Proposition shows that without commitment there does not exist an equi-

librium with wholesale price discrimination.

Proposition 7 Without commitment, an equilibrium with wholesale price discrimination

requires that the equations (4), (5), (16) and (17) and the inequality (12) are satisfied. If

s is small enough, these requirements cannot be satisfied.

The proof of the proposition basically shows that the only way to satisfy the equal

profit condition (16) and not to have an incentive to set a different high wholesale price

((17) is satisfied) is for the manufacturer to set a low wholesale price w∗L for which it has

an incentive to deviate. Alternatively, the only way to guarantee that (12) is satisfied is

when the manufacturer profit per consumer is higher at the low wholesale price, w∗L than

at the high wholesale price w∗H . However, given that retailers do not observe the wholesale

prices set to their competitors, the manufacturer would then be able to profitably and

secretly deviate and set w∗L to all his retailers.

Numerical analysis, reported in the appendix, show that the conclusion of Proposition

7 also holds true when the search cost distribution is uniform and s is not small. Further-

more, we also plot the necessary equilibrium condition (12) for the demand D(p) = (1−p)β

and different values of β, given that the other equilibrium conditions are satisfied and show

that the conclusion of the proposition continues to hold even then.
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6 Requiring Sales at Recommended Price

In the previous section, we have shown that wholesale price discrimination cannot be an

equilibrium outcome if the manufacturer needs to make the same profits over different

retailers, i.e., the equal profit condition given in (16) needs to be satisfied. In the Introduc-

tion we have argued that the Code of Federal Regulations effectively imposes restrictions

on the deviations the manufacturer may contemplate once he announces a recommended

price. In particular, by requiring that at least some consumers buy at the recommended

retail price, the manufacturer may announce the high retail price p∗H as a recommended

retail price, and is then effectively committed to make sure that at least some consumers

buy at this price. This would imply that by contemplating wholesale price discrimination

and annoucing p∗H as a recommended retail price, the manufacturer is not allowed to set to

all retailers the same wholesale price w∗L. Accordingly, the equal profit condition given in

(16) would not need to hold and an equilibrium with wholesale price discrimination would

only need to satisfy the conditions given in (4),(5),(12)and (17). Requiring sales at the

recommended retail price, the wholesale price discriminating equilibrium that maximizes

total surplus has these four equilibrium conditions holding with equality.

The next Proposition argues that when the search cost distribution is uniform, i.e.,

g′(s) = 014, in the most efficient equilibrium with wholesale price discrimination prices

converge to the efficient equilibrium in the uniform pricing case if s → 0. One can show

that p∗H(w∗H) → w∗H and that this implies that w∗L → w∗H , while ∂p̃H(w∗)
∂w

reduces to 1
2
.

Moreover, the comparative statics with respect to s is such that in a neighbourhood of

s = 0, the lowest wholesale and retail prices behave as in the uniform pricing equilibrium,

whereas the highest wholesale and retail price charged are higher. Moreover, the difference

between the lowest and highest wholesale prices, and the lowest and highest retail prices

decreases in the number of retailers, and disappears if the number of retailers gets very

large.

Proposition 8 Consider g′(s) = 0 and regulation in place requiring sales at the recom-

mded retail price. If s → 0 an equilibrium with effective wholesale price discrimination

exists where the manufacturer announces p∗H as the recommded retail price. The most

efficient of these equilibria converges to p∗L = w∗L = p∗H = w∗H , where w∗L = w∗H = w∗

solves 1
2
w∗D

′
(w∗) + D(w∗) = 0. Moreover, in a neighborhood of s = 0 the comparative

statics with respect to s is such that

dp∗L
ds

= − x

D(p∗H)
,
dp∗H
ds

= − 1

D(p∗H)

xN − 1

N
,

dw∗L
ds

= − 1 + x

D(p∗H)
and

dw∗H
ds

= − 1

D(p∗H)

(1 + x)N − 1

N
,

14It is difficult to analyze the limit under price discrimination for other search cost distributions as we

need then to take into account the relationship between g(0) and g(ŝ).
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where x =
2D′(p∗L)

w∗LD
′′(p∗L)+3D′(p∗L)

> 0.

As
dp∗H
ds
− dp∗L

ds
= 1

ND(p∗H)
and the comparative statics for the lowest retail price is equal to

that in the uniform pricing equilibrium, consumers are worse off because of wholesale price

discrimination. Interestingly, we can approximate the fraction of consumers that continue

to search after visiting the high cost retailer,
∫ p∗H
p∗L

D(p)dp/s, by D(p∗H)
(
dp∗H
ds
− dp∗L

ds

)
which

using Proposition 8 equals 1
N
. Compared to the analysis of Section 3, this implies indeed

that the low cost retailer makes the same margin as under uniform pricing.

For larger values of s we can solve numerically for specific demand functions how the

equilibrium evolves under wholesale price discrimination. For linear demand D(p) = 1−p,
in a neighbourhood of s = 0, x = 2/3, so that

dp∗L
ds
≈ −2,

dw∗L
ds
≈ −5,

dp∗H
ds
≈ −1,

dw∗H
ds
≈ −3.

Figure 6.1 shows how wholesale and retail prices change for different values of s. It can be

seen that, under wholesale price discrimination, wholesale and retail prices are decreasing

in s. The figure also confirms that when s → 0, retail margins are very small and that

w∗L → w∗L → w∗ → 2/3.

Fig 6.1 Wholesale and Retail prices for different values of s

The comparison of retail prices under wholesale price discrimination and uniform

pricing is depicted in Figure 6.2 for general values of s. It is clear that under wholesale

price discrimination, both the low and the high retail prices are larger than the retail

price under uniform pricing. On the other hand, the comparison between wholesale prices

is depicted in Figure 6.3. This figure reinforces Figure 6.2 that the high wholesale price

that the manufacturer charges under wholesale price discrimination is larger than the

wholesale price of the uniform pricing case.
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Fig 6.2 Retail prices under uniform pricing and price discrimination

Fig 6.3 Wholesale prices under uniform pricing and price discrimination

As wholesale price discrimination acts as a mechanism that indirectly screens searching

consumers, consumers with different search costs react differently to retail prices. A low

search cost consumer that observes a high retail price continues to search, while others

stop and buy. As a consequence, retailers do not face the same composition of search costs

among their consumers. Specifically, low cost retailers’ demand consists of a relatively

larger share of low search cost consumers. Since low search cost consumers are more

price sensitive, they will induce more competition between low cost retailers. In addition,

because of the increased competition between the low cost retailers, consumers with higher

search cost may also find it attractive to continue searching for lower prices forcing the

high cost retailer also to lower its margins. Thus, both low and high cost retailers have

lower margins under wholesale price discrimination as shown in Figure 6.4 below.
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Fig 6.4 Retail margins for different values of s

Fig 6.5 Retailers’ Profit for different values of s

Furthermore, Figure 6.5 shows the difference in retail profits between the uniform

pricing case and the price discrimination setting. These numerical results show that

despite the lower margins, the low cost retailer earns higher profits compared to a retailer

under uniform pricing for smaller values of s. The reason is that the difference in margins

is small, while low cost retailers gain more sales due to low cost searchers that first visited

the high cost retailers continuing to search for the low cost retailers. For larger values

of s, the numerical analysis shows that it is the lower margins that dominate the impact

on the low cost retailers’ profits. The profit of retailers under uniform pricing are always

higher than the profit the high cost retailer makes under wholesale price discrimination.

Given the negative impact on consumer welfare, it is important to understand if the

manufacturer has an incentive to engage in wholesale price discrimination. This will be the

case if the manufacturer earns higher profits compared to uniform pricing. We can perform

a similar analysis as with the other variables of interest. At s = 0 the manufacturer

makes the same profit whether or not it engages in wholesale price discrimination. When
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s increases, the change in manufacturer profit under uniform pricing is given by:

dΠM

ds
=
dw∗

ds
D(p∗) + w∗D′(p∗)

dp∗

ds
.

Using Proposition 6 and the fact that if s → 0 we have that D(p∗) + 1
2
w∗D′(p∗) = 0

it turns out that as s→ 0, the first-order approximation for the change in manufacturer

profits for uniform pricing is − D′(p∗)

(wD′′(p∗)+3D′ (p̃))
. In the case of wholesale price discrimina-

tion we have that

N
dπ(wL, wH)

ds
=

N − 1 +G(ŝ)

N

(
dw∗L
ds

D(p∗L) + w∗LD
′(p∗L)

dp∗L
ds

)
+

1−G(ŝ)

N

(
dw∗H
ds

D(p∗H) + w∗HD
′(p∗H)

dp∗H
ds

)
− g(ŝ)

N
D(p∗H)

(
dp∗H
ds
− dp∗L

ds

)
(wHD(p∗H)− wLD(p∗L))

= D(p∗L)

(
dw∗L
ds
− 2

dp∗L
ds

)
+

1

N

(
1−D(p∗H)

(
dp∗H
ds
− dp∗L

ds

))
D(p∗H)

(
dp∗L
ds
− dp∗H

ds

)
+

1

N

(
1− 2D(p∗H)

(
dp∗H
ds
− dp∗L

ds

))
D(p∗H)

(
dw∗H
ds
− dp∗H

ds
− dw∗L

ds
+
dp∗L
ds

)
,

which, as
dp∗H
ds
− dp∗L

ds
= 1

ND(p∗H)
,
dw∗L
ds
− dp∗L

ds
= − 1

D(p∗H)
and

dw∗H
ds
− dp∗H

ds
= − 1

ND(p∗H)
reduces

to

dπ(wL, wH)

ds
=
−D′(p∗L)− w∗LD′′(p∗L)

w∗LD
′′(p∗L) + 3D′(p∗L)

− N − 1

N3
+

(N − 2) (N − 1)

N3

=
−D′(p∗L)− w∗LD′′(p∗L)

w∗LD
′′(p∗L) + 3D′(p∗L)

+
(N − 3) (N − 1)

N3
,

Thus, in the first-order approximation the manufacturer is strictly better off under whole-

sale price discrimination if D′′(p∗L) < 0 or D′′(p∗L) ≤ 0 and N > 3.

Fig 6.6 Manufacturer’s Profit for different values of s
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For larger values of s we can show numerically that the manufacturer earns higher

profit under wholesale price discrimination, but that the difference is small for smaller

values of s. This is confirmed in Figure 6.6 above, where the manufacturer’s profits under

both pricing practices is depicted.

Finally, since wholesale price discrimination leads to increased retail prices downstream

this implies that consumer surplus will suffer. Under such a pricing practice, both low and

high search cost consumers end up paying higher retail prices. Furthermore, a fraction of

consumers with low search costs has to incur a search cost to find the low retail price p∗L,

while under uniform pricing consumer pay lower retail prices and do not have to incur a

search cost.

Results regarding expected consumer surplus from propositions (5) and (8), state that

while expected consumer surplus is increasing in s, both under uniform and wholesale

price discrimination, it increases twice as fast when the manufacturer sets uniform prices

to his retailers. Figure 6.7, shows the difference in consumer surplus under these two

different practices for larger values of s. From the figure we can see that the impact of

wholesale price discrimination on consumer surplus can be quite large. For instance, for

a search cost of 0.04, consumer surplus under wholesale price discrimination decreases by

approximately 6%.

Fig 6.7 Expected Consumer Surplus for different values of s
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7 Discussion and Conclusion

In this paper, we have focused on a vertically related industry where consumers in the

retail market have heterogeneous search cost. We showed that the manufacturer has

an incentive to set different wholesale prices to different retailers in order to stimulate

consumers to search for lower prices, inducing more competition between retailers and

lower retail margins. If the manufacturer could commit to wholesale prices, we show that

she will make more profit by discriminating between retailers, making both retailers and

consumers worse off. However, in most markets firms cannot commit to prices (especially

not if they are not observed by retailers that are not directly affected by them and also not

by consumers). We have shown that without commitment an equilibrium with wholesale

price discrimination does not exist for many market constellations. We have also shown

that legislation requiring that a substantial number of sales are made at recommended

retail prices gives manufacturers a possibility to partially commit to wholesale prices

discrimination and that this is enough to engage in wholesale price discrimination and

to announce the retail price of the high cost retailer(s) as the recommended retail price.

Despite the fact that competition authorities impose such restrictions with the aim of

protecting consumers, we have shown that they actually have the opposite effect. The

legal requirement serves as a commitment device and eliminates the possibility of the

manufacturer to deviate and charge all retailers the low wholesale price.

We have shown that once the monopolist manufacturer has the possibility to price

discriminate among his retailers he will charge low prices to some retailers and high

prices to others. As retailers optimally react to such wholesale prices, the downstream

market will consist of low and high retail prices. Given that consumers differ in their

search costs, some of them will stop and buy at the their first search, while consumers

that have lower search costs can afford to continue searching and only buy at a low retail

price. Therefore, the demand of high cost retailers will consist of only high search cost

consumers, while the low cost retailers’ demand will consist of a relatively larger share of

low search cost consumers. In contrast, under uniform pricing retailers would each face

the same demand composition. Thus, wholesale price discrimination acts as a mechanism

that indirectly screens consumers according to their search costs.

The low search cost consumers, who are more price sensitive, increase competition

between the low cost retailers, which makes even high search cost consumers more inclined

to search. Also as high cost retailers have relatively fewer consumers, they also will be

inclined to settle for lower retail margins in order to induce more consumers to buy. As

a result, under wholesale price discrimination both types of retailers have lower margins.

Finally, as wholesale price discrimination increases average wholesale and retail prices,

consumers are worse off since, no matter their search cost, consumers end up buying at

higher retail prices and some of them have to search twice.

Typically, price discrimination is used to differentiate between consumers with dif-
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ferent valuations. In this paper we have focussed on a very different function of price

discrimination. In our story it is essential (i) that consumers do not know which retailer

has which wholesale (or retail) price and that their first search is random and (ii) that

consumers believe that some retailers have a lower prices because they contract at a lower

wholesale price. This is enough to induce more retail competition, lower retail margins

and higher manufacturer profits. This mechanism may also affect other aspects of the ver-

tical relationship between manufacturers and retailers and we think that it is worthwhile

in future research to see in which type of contractual arrangements, manufacturers may

induce asymmetries between retailers to induce more retail competition and when this

may benefit consumers. In the Appendix, we also present an extension where we allow

the manufacturer to make use of two-part tariffs and we show that, both under wholesale

price commitment and under no commitment, our main results continue to hold and are

thus robust to such contractual agreements.

8 Appendix

Proposition 1. Consider s → 0. If the manufacturer commits to a uniform wholesale

price, then the uniform retail and wholesale prices converge to p∗ = w∗, where w∗ solves

w∗D
′
(w∗) +D(w∗) = 0. Moreover, we have that dp∗

ds
= 0 and dw∗

ds
= − 1

D(p∗)
.

Proof: The first part of the Proposition is proved in the main text. Here, we only

discuss the comparative static result. To determine the optimal wholesale price we first

evaluate δp∗

δw
. From (1) it follows that

∂p∗

∂w
=

D′(p∗)− g(0)D2(p∗)

−2g(0)D(p∗)D′(p∗)(p∗ − w)− g(0)D2(p∗) +D′′(p∗)(p∗ − w) + 2D′(p∗)

so that the first-order condition for the manufacturer can be written as

0 = wD′(p∗)

(
D′(p∗)

g(0)
−D2(p∗)

)
− 2D2(p∗)D

′
(p∗)(p∗ − w)

−D3(p∗) +
D(p∗)D

′′
(p∗)(p∗ − w)

g(0)
+

2D(p∗)D′(p∗)

g(0)
.

Taking the total differential evaluated in a neighborhood of s = 0 gives

0 =
(
2D(p∗)D′(p∗) + wD′2(p∗)

)
d

1

g(0)
+D′(p∗)D2(p∗)dw,

which, using D(p∗) + wD′(p∗) = 0, gives

dw = − 1

D(p∗)
d

1

g(0)
,
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Taking the total differential of the first-order condition (1) of the retailer and evalu-

ating it in a neighborhood of s = 0 where g(0)→∞ gives

d
1

g(0)
+D(p∗)dw∗ −D(p∗)dp∗ = 0,

Substituting dw = − 1
D(p∗)

d 1
g(0)

yields dp∗ = 0.

Proposition 2. Consider g′ = 0 and s→ 0. If the manufacturer commits to wholesale

price discrimination selling toN−1 retailers at a low wholesale price wL and to 1 retailer at

a high wholesale price wH , then optimal wholesale prices w∗L and w∗H and the corresponding

retail prices p∗L and p∗H converge to w∗ and p∗, with p∗ = w∗ solving w∗D
′
(w∗)+D(w∗) = 0.

Moreover, we have that

Proof: As g′ = 0 we have that g(ŝ) = g(0) and G(ŝ) = g(0)
∫ p∗H
p∗L

D(p)dp. Maximizing

π(wL, wH) =
1

N
[1−G(ŝ)]wHD(p∗H) +

N − 1 +G(ŝ)

N
wLD(p∗L)

yields the following two first-order conditions

0 = (wLD(p∗L)− wHD(p∗H))

(
D(p∗H)

∂p∗H
∂w∗H

−D(p∗L)
∂p∗L
∂w∗H

)
+

[1−G(ŝ)]

g(ŝ)

[
D(p∗H) + wHD

′(p∗H)
∂p∗H
∂w∗H

]
+
N − 1 +G(ŝ)

g(ŝ)
wLD

′(p∗L)
∂p∗L
∂w∗H

,

and

0 = (wLD(p∗L)− wHD(p∗H))

(
D(p∗H)

∂p∗H
∂w∗L

−D(p∗L)
∂p∗L
∂w∗L

)
+
N − 1 +G(ŝ)

g(ŝ)

[
D(p∗L) + wLD

′(p∗L)
∂p∗L
∂w∗L

]
+

[1−G(ŝ)]

g(ŝ)
wHD

′(p∗H)
∂p∗H
∂w∗L

.

The total differential of the first first-order condition in the neighborhood of s = 1
g(0)

= 0

where wD′(p) = −D(p) and D(p∗L) = D(p∗H) can be written as

(
D(p∗L) + wLD

′(p∗L)
∂p∗L
∂w∗L

− wHD′(p∗H)
∂p∗H
∂w∗L

)(
D(p∗H)

∂p∗H
∂w∗H

−D(p∗L)
∂p∗L
∂w∗H

)
dwL

−
(
D(p∗H)− wLD′(p∗L)

∂p∗L
∂w∗H

+ wHD
′(p∗H)

∂p∗H
∂w∗H

)(
D(p∗H)

∂p∗H
∂w∗H

−D(p∗L)
∂p∗L
∂w∗H

)
dwH

−
(
D(p∗H) + wHD

′(p∗H)
∂p∗H
∂w∗H

− wHD′(p∗H)
∂p∗L
∂w∗H

)
D(p∗L)

((
∂p∗H
∂w∗H

− ∂p∗L
∂w∗H

)
dwH +

(
∂p∗H
∂w∗L

− ∂p∗L
∂w∗L

)
dwL

)
+

([
D(p∗H) + wHD

′(p∗H)
∂p∗H
∂w∗H

]
+ [N − 1]wLD

′(p∗L)
∂p∗L
∂w∗H

)
d

1

g(ŝ)
= 0,

or
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(
∂p∗H
∂w∗H

− ∂p∗L
∂w∗H

)((
1 +

∂p∗H
∂w∗L

− ∂p∗L
∂w∗L

)
dwL −

(
1− ∂p∗H

∂w∗H
+
∂p∗L
∂w∗H

)
dwH

)
(18)

−
(

1−
(
∂p∗H
∂w∗H

− ∂p∗L
∂w∗H

))((
∂p∗H
∂w∗H

− ∂p∗L
∂w∗H

)
dwH +

(
∂p∗H
∂w∗L

− ∂p∗L
∂w∗L

)
dwL

)
+

([
1− ∂p∗H

∂w∗H

]
− [N − 1]

∂p∗L
∂w∗H

)
d

1

D(p∗H)g(ŝ)
= 0.

The total differential of the second first-order condition in the neighborhood of s =
1
g(0)

= 0 where wD′(p) = −D(p) can be written as

(
D(p∗L) + wLD

′(p∗L)
∂p∗L
∂w∗L

− wHD′(p∗H)
∂p∗H
∂w∗L

)(
D(p∗H)

∂p∗H
∂w∗L

−D(p∗L)
∂p∗L
∂w∗L

)
dwL

−
(
D(p∗H)− wLD′(p∗L)

∂p∗L
∂w∗H

+ wHD
′(p∗H)

∂p∗H
∂w∗H

)(
D(p∗H)

∂p∗H
∂w∗L

−D(p∗L)
∂p∗L
∂w∗L

)
dwH

+

(
D(p∗L) + wLD

′(p∗L)
∂p∗L
∂w∗L

− wHD′(p∗H)
∂p∗H
∂w∗L

)
D(p∗L)

((
∂p∗H
∂w∗L

− ∂p∗L
∂w∗L

)
dwL +

(
∂p∗H
∂w∗H

− ∂p∗L
∂w∗H

)
dwH

)
+

(
(N − 1)

[
D(p∗L) + wLD

′(p∗L)
∂p∗L
∂w∗L

]
+ wHD

′(p∗H)
∂p∗H
∂w∗L

)
d

1

g(ŝ)
= 0,

or

(
∂p∗H
∂w∗L

− ∂p∗L
∂w∗L

)((
1 +

∂p∗H
∂w∗L

− ∂p∗L
∂w∗L

)
dwL −

(
1 +

∂p∗H
∂w∗H

+
∂p∗L
∂w∗H

)
dwH

)
(19)

+

(
1−

(
∂p∗L
∂w∗L

− ∂p∗H
∂w∗L

))((
∂p∗H
∂w∗L

− ∂p∗L
∂w∗L

)
dwL +

(
∂p∗H
∂w∗H

− ∂p∗L
∂w∗H

)
dwH

)
+

(
N

[
1− ∂p∗L

∂w∗L

]
−
(

1−
(
∂p∗L
∂w∗L

− ∂p∗H
∂w∗L

)))
d

1

D(p∗L)g(ŝ)
= 0.

We next evaluate the different partial derivatives in the neighborhood of s = 1
g(0)

= 0

where p∗H = wH . To derive these partial derivatives, we rewrite the retail first-order

conditions (4) and (5) as

f1(p∗H , p
∗
L, w

∗
H) = −D2(p∗H)(p∗H − wH) +

(1−G (ŝ))

g(ŝ)

[
D
′
(p∗H)(p∗H − wH) +D(p∗H)

]
= 0.

(20)

f2(p∗H , p
∗
L, w

∗
L) = −

(
(N − 1)2

N
+ 1

)
D2(p∗L)(p∗L−w∗L)+

((N − 1) +G(ŝ))

g(ŝ)

[
D
′
(p∗L)(p∗L − w∗L) +D(p∗L)

]
= 0.

(21)

Taking the total differential of f1 we obtain:

−D2(p∗H) (dp∗H − dw∗H)−D(p∗H) (D(p∗H)dp∗H −D(p∗L)dp∗L) +D(p∗H)d 1
g(ŝ)

= 0, or

−2dp∗H + dw∗H + dp∗L + d
1

D(p∗H)g(ŝ)
= 0.
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Similarly, taking the total differential of f2 and leaving out ”irrelevant” terms we

obtain:

−
(

(N−1)2

N
+ 1
)
D2(p∗L) (dp∗L − dw∗L)+D(p∗L) (D(p∗H)dp∗H −D(p∗L)dp∗L)+(N−1)D(p∗L)d 1

g(ŝ)
=

0, or

−N
2 + 1

N
dp∗L +

N2 −N + 1

N
dw∗L + dp∗H + d

N − 1

D(p∗L)g(ŝ)
= 0

Thus, the total effects of wLand wH on retail prices can be calculated by substituting

these two equations into each other:

2N2 −N + 2

N
dp∗L = 2

N2 −N + 1

N
dw∗L + dw∗H + (2N − 1) d

1

D(p∗L)g(ŝ)
,

or (
2N2 −N + 2

)
dp∗L = 2

(
N2 −N + 1

)
dw∗L +Ndw∗H + d

N (2N − 1)

D(p∗L)g(ŝ)
, (22)

and

−2
N2 + 1

N
dp∗H+

N2 + 1

N
dw∗H+

N2 + 1

N
d

1

D(p∗H)g(ŝ)
+
N2 −N + 1

N
dw∗L+dp∗H+d

N − 1

D(p∗L)g(ŝ)
= 0

or(
2N2 −N + 2

)
dp∗H =

(
N2 + 1

)
dw∗H +

(
N2 −N + 1

)
dw∗L + d

2N2 −N + 1

D(p∗L)g(ŝ)
(23)

Thus, it follows from (22) and (23) that

∂p∗H
∂w∗L

− ∂p∗L
∂w∗L

=
(N2 −N + 1)− 2 (N2 −N + 1)

(2N2 −N + 2)
=
−N2 +N − 1

(2N2 −N + 2)

∂p∗H
∂w∗H

− ∂p∗L
∂w∗H

=
(N2 −N + 1)

(2N2 −N + 2)

and therefore (18) can be simplified as

N2 −N + 1

(2N2 −N + 2)

((
1 +

−N2 +N − 1

(2N2 −N + 2)

)
dwL −

(
1− (N2 −N + 1)

(2N2 −N + 2)

)
dwH

)
−
(

1− (N2 −N + 1)

(2N2 −N + 2)

)(
(N2 −N + 1)

(2N2 −N + 2)
dwH +

−N2 +N − 1

(2N2 −N + 2)
dwL

)
+

([
1− N2 + 1

2N2 −N + 2

]
− [N − 1]

N

2N2 −N + 2

)
d

1

D(p∗H)g(ŝ)
= 0,

or

N2 −N + 1

2N2 −N + 2

(
N2 + 1

(2N2 −N + 2)
dwL −

N2 + 1

2N2 −N + 2
dwH

)
− N2 + 1

2N2 −N + 2

(
(N2 −N + 1)

(2N2 −N + 2)
dwH +

−N2 +N − 1

(2N2 −N + 2)
dwL

)
+

1

2N2 −N + 2
d

1

D(p∗H)g(ŝ)
= 0,
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or

2
N2 −N + 1

2N2 −N + 2

(
N2 + 1

)
(dwL − dwH) + d

1

D(p∗H)g(ŝ)
= 0,

In addition, (19) can be simplified to the same expression.

Thus, we have that

Substituting into (22) and (23) yields

dp∗L − dw∗L =

(
N

2 (N2 + 1) (N2 −N + 1)
+

N (2N − 1)

(2N2 −N + 2)

)
d

1

D(p∗L)g(ŝ)
, (24)

and

dp∗H − dw∗H =

(
− 1

2 (N2 + 1)
+

2N2 −N + 1

2N2 −N + 2

)
d

1

D(p∗L)g(ŝ)
(25)

Also, we can approximate the fraction of consumers that continue to search after

visiting the high cost retailer,
∫ p∗H
p∗L

D(p)dp/s, by

D(p∗H) (dp∗H − dp∗L) = − N2 −N + 1

2N2 −N + 2
D(p∗H) (dw∗L − dw∗H) + d

1

g(ŝ)

1

(2N2 −N + 2)
.

D(p∗H) (dp∗H − dp∗L) =
N2 −N + 1

2N2 −N + 2

2N2 −N + 2

2(N2 + 1)(N2 −N + 1)
d

1

g(ŝ)
+ d

1

g(ŝ)

1

(2N2 −N + 2)
.

D(p∗H) (dp∗H − dp∗L) =

[
1

2(N2 + 1)
+

1

(2N2 −N + 2)

]
d

1

g(ŝ)
.

D(p∗H)

(
dp∗H
ds
− dp∗L

ds

)
=

4N2 −N + 4

2(N2 + 1)(2N2 −N + 2)
.

Under wholesale price discrimination and commitment the change in the optimal manu-

facturer profits wLD(p∗L) + 1−G(ŝ)
N

(wHD(p∗H)− wLD(p∗L)) equals

N − 1 +G(ŝ)

N

(
dw∗L
ds

D(p∗L) + w∗LD
′(p∗L)

dp∗L
ds

)
+

1−G(ŝ)

N

(
dw∗H
ds

D(p∗H) + w∗HD
′(p∗H)

dp∗H
ds

)
− g(ŝ)

N
D(p∗H)

(
dp∗H
ds
− dp∗L

ds

)
(wHD(p∗H)− wLD(p∗L))

= D(p∗L)

(
dw∗L
ds
− dp∗L

ds

)
+

1−G(ŝ)

N
D(p∗L)

(
dp∗L
ds
− dw∗L

ds
+
dw∗H
ds
− dp∗H

ds

)
−D

2(p∗H)

N

(
dp∗H
ds
− dp∗L

ds

)(
dw∗H
ds
− dp∗H

ds
− dw∗L

ds
+
dp∗L
ds

)
= D(p∗L)

(
dw∗L
ds
− dp∗L

ds

)
+
D(p∗H)

N

(
1−G(ŝ)−D(p∗H)

(
dp∗H
ds
− dp∗L

ds

))(
dp∗L
ds
− dw∗L

ds
+
dw∗H
ds
− dp∗H

ds

)
= D(p∗L)

(
dw∗L
ds
− dp∗L

ds

)
+

1

N

(
1− 2D(p∗H)

(
dp∗H
ds
− dp∗L

ds

))(
D(p∗H)

(
dw∗H
ds
− dw∗L

ds

)
−D(p∗H)

(
dp∗H
ds
− dp∗L

ds

))
= −

(
N

2 (N2 + 1) (N2 −N + 1)
+

N (2N − 1)

(2N2 −N + 2)

)
+

[
N2

N2 + 1
− 2

2N2 −N + 2

] [
1

2(N2 −N + 1)(2N2 −N + 2)

]
.
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This expression is larger than −1, the change in manufcturer profit under uniform pricing,

if and only if,

− N

2 (N2 + 1) (N2 −N + 1)
+

[
N2

N2 + 1
− 2

2N2 −N + 2

] [
1

2(N2 −N + 1)(2N2 −N + 2)

]
>

−2

(2N2 −N + 2)

or

1

2 (N2 + 1) (N2 −N + 1)

−2N3 + 2N2 − 2N

2N2 −N + 2
>

−2

(2N2 −N + 2)

[
1− 1

2(N2 −N + 1)(2N2 −N + 2)

]
or

N

2 (N2 + 1)
< 1− 1

2(N2 −N + 1)(2N2 −N + 2)
,

which is true as the LHS is decreasing in N , while the RHS is increasing in N and the

inequality certainly holds for N is 3.

Proposition 5. A uniform pricing equilibrium exists and has to satisfy (1), (7), where
∂p̃(w∗)
∂w

is given by (9) and w∗D(p∗(w∗)) ≥ wMD(pM(wM)).

Proof: Apart from the expression for ∂p̃(w∗)
∂w

all the equilibrium conditions are ex-

plained in the main text. From (8) it follows that:

−g′
(∫ p̃

p∗(w∗)

D(p)dp

)
D3(p̃)(p̃− w)

dp̃

dw
− 2g

(∫ p̃

p∗(w∗)

D(p)dp

)
D(p̃)D

′
(p̃)(p̃− w)

dp̃

dw

−g
(∫ p̃

p∗(w∗)

D(p)dp

)
D(p̃)

(
D
′
(p̃)(p̃− w) +D(p̃)

) dp̃
dw
− g

(∫ p̃

p∗(w∗)

D(p)dp

)
D2(p̃)(

dp̃

dw
− 1)

+

(
1−G

(∫ p̃

p∗(w∗)

D(p)dp

))((
D
′′
(p̃)(p̃− w) +D′(p̃)

) dp̃
dw

+D′(p̃)(
dp̃

dw
− 1)

)
= 0,

or,

−g′
(∫ p̃

p∗(w∗)

D(p)dp

)
D3(p̃)(p̃−w)

dp̃

dw
−3g

(∫ p̃

p∗(w∗)

D(p)dp

)
D(p̃)D

′
(p̃)(p̃−w)

∂p̃

∂w
−g
(∫ p̃

p∗(w∗)

D(p)dp

)
D2(p̃)(2

∂p̃

∂w
−1)

+

(
1−G

(∫ p̃

p∗(w∗)

D(p)dp

))(
D
′′
(p̃)(p̃− w)

∂p̃

∂w
+D′(p̃)(2

∂p̃

∂w
− 1)

)
= 0

using the fact that we want to evaluate dp̃
dw

at w = w∗ and that in that case p̃(w∗) =

p∗(w∗) we can use (1) to get

−g′ (0)D3(p̃)(p̃− w)
dp̃

dw
− 3g(0)D(p∗)D

′
(p∗)(p∗ − w)

dp̃

dw
− g(0)D2(p∗)(2

dp̃

dw
− 1)

+D
′′
(p∗)(p∗ − w)

dp̃

dw
+D′(p∗)(2

dp̃

dw
− 1)

= 0,

which gives the expression in (9).
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Proposition 6. If s is small enough, an equilibrium exists. If s → 0 any uniform

pricing equilibrium converges to p∗ = w∗, where w∗ solves 1
2
w∗D

′
(w∗) + D(w∗) ≤ 0.

Moreover, If s → 0
dp∗

d 1
g(0)

= − 2D′(p∗)

D(p∗) (wD′′(p∗) + 3D′(p̃))
< 0

and
dw∗

d 1
g(0)

= − wD′′(p∗) + 5D
′
(p̃)

D(p∗) (wD′′(p∗) + 3D′(p̃))
< 0.

Proof: The first part of the Proposition easily follows as the expression for ∂p̃(w∗)
∂w

reduces to 1
2

if g(0) → ∞. To show existence we first show that the manufacturer does

not want to increase her wholesale price. In particular, we show that

D(p̃) + wD′(p̃)
∂p̃

∂w
≤ 0 for all w > w∗.

First, note that if the manufacturer deviates and sets a w to one or multiple retailers such

that all consumers who visit these retailers continue to search, she cannot make more

profit than in equilibrium. In the best case, if the manufacturer sticks to the wholesale

equilibrium price for one retailer, she will make the same profit as in equilibrium, while

if she deviates to all retailers, she will make les profit as the retailers will react by setting

p̃ = w and wD(w) is decreasing in w for all w > w∗ (because 2D′(w) + wD′′(w) < 0 and

the equilibrium wholesale price is such that 1
2
w∗D

′
(w∗) +D(w∗) ≤ 0 and thus larger than

the optimal price of an integrated monpolist).

Thus, consider deviations such that some consumers still buy from the retailer where

the manufacturer has deviated. In this case, the above inequality holds certainly true if

the derivative of the LHS with respect to w

2D′(p̃)
∂p̃

∂w
+ wD′′(p̃)

(
∂p̃

∂w

)2

+ wD′(p̃)
∂2p̃

∂w2
< 0 for all w > w∗. (26)

From the proof of proposition 3 it follows that in a neighborhood of s = 0 where g(s)→∞
∂p̃
∂w

can be approximated by

∂p̃(w∗)

∂w
=

D′(p̃)− g (0)D2(p̃)

−g′ (0)D3(p̃)(p̃− w)− 3g (0)D(p̃)D′(p̃)(p̃− w)− 2g (0)D2(p̃) + 2D′(p̃) + 2D′′(p̃)(p̃− w)
,

(27)
dp̃

dw
=

1

2
+

3D(p̃)D
′
(p̃)(p̃− w)

−2D2(p̃)
>

1

2

As lims→∞
∂p̃
∂w

= 1
2
, it must be the case that ∂2p̃

∂w2 > 0 for small enough values of s. Thus,

(26) holds true if (2D′(p̃) + wD′′(p̃)) ∂p̃
∂w

< 0. This is certainly the case as small enough

values of s 2D′(p̃) + wD′′(p̃) ≈ 2D′(pw) + wD′′(w) < 0 and ∂p̃
∂w

> 0.

We next show that the manufacturer does not want to decrease her wholesale price

either. The only candidate deviation is to deviate to wM . So, we have to compare
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the equilibrium profit w∗D(p∗) to wMD(pM(wM)). As for small enough values of s

w∗D(p∗) is close to w∗D(w∗) where w∗ solves 1
2
w∗D

′
(w∗) + D(w∗) = 0, it follows that

w∗ is larger than the integrated monopolist price. We will now show that w∗ must

be smaller than pM(wM). Suppose to the contrary that w∗ ≥ pM(wM). In that case
1
2
pM(wM)D

′
(pM(wM)) +D(pM(wM)) ≥ 0.15 From the FOC of the monopoy price pM(w)

it follows that

dpM(w)

dw
=

D′(pM(w))

2D′(pM(w)) + (pM(w)− w)D′′(pM(w))
≤ 1

2
.

Hence, pM(wM)D
′
(pM(wM))dp

M (w)
dw

+D(pM(wM)) ≥ wMD
′
(pM(wM))dp

M (w)
dw

+D(pM(wM)) >

0. But this contradicts the manufacturer’s optimal condition of the double marginaliza-

tion price so that w∗ < pM(wM). It then follows that w∗D(w∗) > pM(wM)D(pM(wM)) >

wMD(pM(wM)) and that it is not optimal to deviate downwards either.

To establish that an equilibrium exists for small enough values of s, we finally consider

the retailer’s decision problem. From the retailer’s profit function, it follows that for all

p̃ ≥ p∗ the first-order derivative equals

−g
(∫ p̃

p∗(w∗)

D(p)dp

)
D2(p̃)(p̃− w) +D

′
(p̃)(p̃− w) +D(p̃),

while the second-order derivative equals

−g′
(∫ p̃

p∗(w∗)

D(p)dp

)
D3(p̃)(p̃−w)−g

(∫ p̃

p∗(w∗)

D(p)dp

)
D(p̃)

(
2D

′
(p̃)(p̃− w) +D(p̃)

)
+D

′′
(p̃)(p̃−w)+2D

′
(p̃).

As (p̃− w) is close to 0 if s becomes small and as g′(s) > −∞ this expression is smaller

than 0 if s becomes small.

To prove the comparative statics results, we first rewrite the equilibrium condition for

the manufacturer in a neighborhood of s = 0 as

0 = wD′(p∗)

(
D′(p∗)

g(0)
−D2(p∗)

)
− 3D2(p∗)D

′
(p∗)(p∗ − w)− 2D3(p∗)

+
2D′(p∗)D(p∗) + 2D

′′
(p∗)D(p∗)(p∗ − w)− g′ (0)D4(p∗)(p∗ − w)

g(0)
.

Taking the total differential and taking into account that in a neighborhood of s = 0, g →
∞ this approximately yields

0 ≈ D′(p∗) (w∗D′(p∗) + 2D(p∗)) d
1

g(0)
+ 2D′(p∗)D2(p∗)dw

+
(
−w∗D′′(p∗)D2(p∗)− 2w∗D′2(p∗)D(p∗)− 9D2(p∗)D

′
(p∗)

)
dp∗.

15As pD′′(p) + 2D′(p) < 0 it follows that the derivative of 1
2pD

′
(p) +D(p) < 0.
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As 1
2
w∗D′(p∗) +D(p∗) = 0 the first term is approximately equal to 0 so that we have

dw∗ =
w∗D′′(p∗) + 5D

′
(p∗)

2D′(p∗)
dp∗.

From the proof of Proposition 3, we know that the total differential of the first-order

condition (1) of the retailer evaluated in a neighborhood of s = 0 is

d
1

g(0)
+D(p∗)dw∗ −D(p∗)dp∗ = 0.

Combining these two equations gives

d
1

g(0)
+D(p∗)

w∗D′′(p∗) + 3D
′
(p∗)

2D′(p∗)
dp∗ = 0

or

dp∗

d 1
g(0)

= − 2D′(p∗)

D(p∗) (w∗D′′(p∗) + 3D′(p∗))
.

so that
dw∗

d 1
g(0)

= − w∗D′′(p∗) + 5D
′
(p∗)

D(p∗) (w∗D′′(p∗) + 3D′(p∗))
.

As the demand function satisfies w∗D′′(p∗) + 2D
′
(p∗) < 0 it follows that both expressions

are negative.

Proposition 7. Without commitment, an equilibrium with wholesale price discrim-

ination requires that the equations (4),(16), (5) and (17) and the inequality (12) are

satisfied. If s is small enough these requirements cannot be satisfied.

Proof. The first-order condition for profit maximization of the high-cost retailer (4)

can be written as

−g

(
ŝ+

∫ pH

p∗H

D(p)dp

)
D2(pH)(pH−wH)+

(
1−G

(
ŝ+

∫ pH

p∗H

D(p)dp

))[
D
′
(pH)(pH − wH) +D(pH)

]
.

(28)

Taking the total differential gives

−g′
(
ŝ+

∫ pH

p∗H

D(p)dp

)
D3(pH)(pH − wH)

∂pH
∂wH

− 3g

(
ŝ+

∫ pH

p∗H

D(p)dp

)
D(pH)D′(pH)(pH − wH)

∂pH
∂wH

−g

(
ŝ+

∫ pH

p∗H

D(p)dp

)
D2(pH)(2

∂pH
∂wH

− 1) +(
1−G

(
ŝ+

∫ pH

p∗H

D(p)dp

))[
D
′′
(pH)(pH − wH)

∂pH
∂wH

+D′(pH)(2
∂pH
∂wH

− 1)

]
= 0,
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which evaluated at the equilibrium values yields

−g′ (ŝ)D3(p∗H)(p∗H − w∗H)
∂pH
∂wH

− 3g (ŝ)D(p∗H)D′(p∗H)(p∗H − w∗H)
∂pH
∂wH

− g (ŝ)D2(p∗H)(2
∂pH
∂wH

− 1)

+ (1−G (ŝ))

[
D
′′
(p∗H)(p∗H − w∗H)

∂pH
∂wH

+D′(p∗H)(2
∂pH
∂wH

− 1)

]
= 0.

Thus,

∂pH
∂wH

=
(1−G (ŝ))D′(p∗H)− g (ŝ)D2(p∗H)

−g′ (ŝ)D3(p∗H)(p∗H − w∗H)− 3g (ŝ)D(p∗H)D′(p∗H)(p∗H − w∗H) + (1−G (ŝ)) [D′′(p∗H)(p∗H − w∗H) + 2D′(p∗H)]− 2g (ŝ)D2(p∗H)
.

Using the first-order condition (4) evaluated at equilibrium values,

g (ŝ)D2(p∗H)(p∗H − w∗H) = (1−G (ŝ))
[
D
′
(p∗H)(p∗H − w∗H) +D(p∗H)

]
,

we can rewrite ∂pH
∂wH

as

=
D′(p∗H)−

[
D
′
(p∗H) +

D(p∗H)

(p∗H−w
∗
H)

]
−
(

3D′(p∗H) + g′(ŝ)
g(ŝ)

) [
D′ (p∗H)(p∗H−w

∗
H)

D(p∗H)
+ 1
]

+ [D′′(p∗H)(p∗H − w∗H) + 2D′(p∗H)]− 2
[
D′(p∗H) +

D(p∗H)

(p∗H−w
∗
H)

]
=

− D(p∗H)

(p∗H−w
∗
H)

−
(

3D′(p∗H) + g′(ŝ)
g(ŝ)

) [
D′ (p∗H)(p∗H−w

∗
H)

D(p∗H)
+ 1
]

+D′′(p∗H)(p∗H − w∗H)− 2D(p∗H)

(p∗H−w
∗
H)

.

For the low-cost retailer we can perform a similar analysis to evaluate ∂pL
∂wL

. Taking the

first-order condition of (3) with respect to pL yields

0 =

1−G

(
N − 1

N

∫ pL

p∗L

D(p)dp

)
+
G
(∫ p∗H

pL
D(p)dp

)
(N − 1)

 [D′(pL)(pL − wL) +D(pL)]

−

N − 1

N
g

(
N − 1

N

∫ pL

p∗L

D(p)dp

)
+
g
(∫ p∗H

pL
D(p)dp

)
N − 1

D2(pL)(pL − wL).

Taking the total differential and inserting equilibrium values gives

0 = −
[
N − 1

N
g (0) +

g (ŝ)

N − 1

]
D(pL) [D′(pL)(pL − wL) +D(pL)]

∂pL
∂wL

+[
1 +

G (ŝ)

(N − 1)

] [
D′′(pL)(pL − wL)

∂pL
∂wL

+D′(pL)(2
∂pL
∂wL

− 1)

]
−

((
N − 1

N

)2

g′ (0)− g′ (ŝ)

N − 1

)
D3(pL)(pL − wL)

∂pL
∂wL

−
(
N − 1

N
g (0) +

g (ŝ)

N − 1

)
D(pL)

(
2D′(pL)(pL − wL)

∂pL
∂wL

+D(pL)(
∂pL
∂wL

− 1)

)
,
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which can be rewritten as

0 = −3

[
N − 1

N
g (0) +

g (ŝ)

N − 1

]
D(pL)D′(pL)(pL − wL)

∂pL
∂wL

+[
1 +

G (ŝ)

(N − 1)

] [
D′′(pL)(pL − wL)

∂pL
∂wL

+D′(pL)(2
∂pL
∂wL

− 1)

]
−

((
N − 1

N

)2

g′ (0)− g′ (ŝ)

N − 1

)
D3(pL)(pL − wL)

∂pL
∂wL

−
(
N − 1

N
g (0) +

g (ŝ)

N − 1

)
D2(pL)(2

∂pL
∂wL

− 1),

or

∂pL
∂wL

=

[
1 + G(ŝ)

(N−1)

]
D′(p∗L)−

(
N−1
N
g (0) + g(ŝ)

N−1

)
D2(p∗L)

−
((

N−1
N

)2
g′ (0)− g′(ŝ)

N−1

)
D3(p∗L)(p∗L − w∗L)−

[
N−1
N
g (0) + g(ŝ)

N−1

]
(3D(p∗L)D′(p∗L)(p∗L − w∗L) + 2D2(p∗L)) +

[
1 + G(ŝ)

(N−1)

]
[D′′(p∗L)(p∗L − w∗L) + 2D′(p∗L)]

Using the first-order condition (5) evaluated at equilibrium values,

(
N − 1

N
g (0) +

g (ŝ)

N − 1

)
D2(p∗L)(p∗L − w∗L) =

[
1 +

G (ŝ)

(N − 1)

]
[D′(p∗L)(p∗L − w∗L) +D(p∗L)]

we can rewrite ∂pL
∂wL

=

(
D′(p∗L)− D′(pL)(p∗L−w

∗
L)+D(pL)

(p∗L−w
∗
L)

)
−(N−1

N )
2
g′(0)− g′(ŝ)

N−1

(N−1
N

g(0)+
g(ŝ)
N−1)

[
D′(p∗L)

D(p∗L)
(p∗L − w∗L) + 1

]
−
[
D′(p∗L)(p∗L−w

∗
L)+D(p∗L)

(p∗L−w
∗
L)

] (
3
D′(p∗L)

D(p∗L)
(p∗L − w∗L) + 2

)
+ [D′′(p∗L)(p∗L − w∗L) + 2D′(p∗L)]

=
− D(p∗L)

(p∗L−w
∗
L)

−
[
D′(p∗L)

D(p∗L)
(p∗L − w∗L) + 1

](
3D′(p∗L) +

(N−1
N )

2
g′(0)− g′(ŝ)

N−1

(N−1
N

g(0)+
g(ŝ)
N−1)

)
+D′′(p∗L)(p∗L − w∗L)− 2D(p∗L)

p∗L−w
∗
L

.

From the expressions for ∂pH
∂wH

and ∂pL
∂wL

it follows that in a neighborhood of s = 0 where

p∗i ≈ w∗i , i = L,H, is approximately equal to

∂pL
∂wL

− ∂pH
∂wH

= −

(
3D′(p∗L) +

(N−1
N )

2
g′(0)− g′(ŝ)

N−1

(N−1
N

g(0)+
g(ŝ)
N−1)

)
(p∗H − w∗H)

4D(p∗L)
+

(
3D′(p∗H) + g′(ŝ)

g(ŝ)

)
(p∗L − w∗L)

4D(p∗H)
.

We now prove that in a neighborhood of s = 0 if g′(s) = 0 we have that if

w∗HD
′(p∗H)

∂pH
∂wH

+D(p∗H) = 0,

then: w∗LD
′(p∗L) ∂pL

∂wL
+D(p∗L)
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≈ w∗LD
′(p∗L)

 ∂pH
∂wH
−

3D′(p∗L)+
(N−1

N )
2
g′(0)− g′(ŝ)

N−1

(N−1
N

g(0)+
g(ŝ)
N−1)

(p∗H−w
∗
H)

4D(p∗L)
+

(
3D′(p∗H)+

g′(ŝ)
g(ŝ)

)
(p∗L−w

∗
L)

4D(p∗H)

+D(p∗L) > 0.

Our claim is true if

0 > (w∗HD
′(p∗H)− w∗LD′(p∗L))

∂pH
∂wH

+D(p∗H)−D(p∗L) +

w∗LD
′(p∗L)


(

3D′(p∗L) +
(N−1

N )
2
g′(0)− g′(ŝ)

N−1

(N−1
N

g(0)+
g(ŝ)
N−1)

)
(p∗H − w∗H)

4D(p∗L)
−

(
3D′(p∗H) + g′(ŝ)

g(ŝ)

)
(p∗L − w∗L)

4D(p∗H)

 .

In a neighborhood of s = 0 we can write w∗i = w∗ + dwi, D(p∗i ) = D(p∗) + D′(p∗i )dp
∗
i

and D′(p∗i ) = D′(p∗) + D′′(p∗i )dp
∗
i , i = L,H. Thus, the first-order approximation of the

right-hand side is

0 > (D′(p∗)(dwH − dwL) + w∗D′′(p∗)(dpH − dpL))
∂pH
∂wH

+D′(p∗)(dpH − dpL) (29)

−w∗ D
′(p∗)

4D(p∗)

3D′(p∗) (dwH − dwL − (dpH − dpL))−
(
N−1
N

)2
g′ (0)− g′(ŝ)

N−1(
N−1
N
g (0) + g(ŝ)

N−1

) (dpH − dwH) +
g′ (ŝ)

g (ŝ)
(dpL − dwL)

 .

From the equal profit condition w∗LD(p∗L) = w∗HD(p∗H) it follows thatD(p∗)dwL+w∗D′(p∗)dpL =

D(p∗)dwH + w∗D′(p∗)dpH or

−w∗D′(p∗) (dpH − dpL) = D(p∗) (dwH − dwL)

so that using w∗D′(p∗) ∂pH
∂wH

+D(p∗) = 0 we have

dwH − dwL =
dpH − dpL

∂pH
∂wH

.

As when s→ 0 g(0)→∞ and because of the assumption that −∞ < g′(s) <∞ g′(ŝ)
g(ŝ)

also

approaches 0 if s→ 0 we can rewrite (29) as(
w∗D′′(p∗)

∂pH
∂wH

+ 2D′(p∗)− 3

4

w∗D′2(p∗)

D(p∗)

)
(dpH − dpL) < 0.

This is clearly needs to be the case as in an equilibrium with wholesale price discrim-

ination dpH − dpL > 0, whereas w∗D′′(p∗) ∂pH
∂wH

+ 2D′(p∗) < 0 because of the second-order

condition for profit maximization.
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Proposition 8. Consider g′(s) = 0 and regulation is in place requiring sales at the

recommded retail price. If s → 0 an equilibrium with effective wholesale price discrimi-

nation exists where the manufacturer announces p∗H as the recommded retail price. The

most efficient of these equilibria converges to p∗L = w∗L = p∗H = w∗H , where w∗L = w∗H = w∗

solves 1
2
w∗D

′
(w∗) + D(w∗) = 0. Moreover, in a neighborhood of s = 0 the comparative

statics with respect to s is such that

dp∗L
ds

= − x

D(p∗H)
,
dw∗L
ds

= − 1 + x

D(p∗H)
d

1

g (0)
,
dp∗H
ds

= − 1

D(p∗H)

xN − 1

N
,
dw∗H
ds

= − 1

D(p∗H)

(1 + x)N − 1

N
,

where x =
2D′(p∗L)

w∗LD
′′(p∗L)+3D′(p∗L)

> 0.

Proof. We first show that if an equilibrium exists, it must be that 1
2
w∗D

′
(w∗) +

D(w∗) = 0 in the limit where s → 0. From (4) it is clear that in any equilibrium with

wholesale price discrimination p∗H → w∗H . As 0 < ŝ < s, where ŝ =
∫ p∗H
p∗L

D(p)dp, it must

be the case that p∗H → p∗L if s → 0. Next, consider (5) if s → 0. Since also ŝ → 0,

and D′∗L ) < 0 while D(p∗L) > 0 it must be that in any equilibrium with wholesale price

discrimination p∗L → w∗L. Thus, if s → 0 then it follows that p∗H ≈ p∗L ≈ w∗H ≈ w∗L. It

remains to be seen to which values the wholesale and retail prices converge. To this end,

consider (10) in a neighbourhood of s = 0 where p∗L − w∗L = 0. It is easy to see that

∂pL
∂wL

≈
−(N − 1 + 1

N
)D2(p∗L)

−2(N − 1 + 1
N

)D2(p∗L)
≈ 1

2
.

Thus, in a neighbourhood of s = 0 the first-order condition determining w∗L can be

simplified to
1

2
w∗LD

′
(w∗L) +D(w∗L) ≈ 0.

We now prove the comparative statics results assuming an equilibrium exists and come

back to the existence issue at the end of the proof. Substituting (5) into (12) and taking

into account that g′(s) = 0 we have that (12) can be written as

0 = −w∗LD
′
(p∗L)D(p∗L)−

[
D′(p∗L)(p∗L − w∗L)2 +D(p∗L)(p∗L − w∗L)

]
3D′(p∗L)

+D′′(p∗L)2D(p∗L)(p∗L − w∗L)2 − 2D2(p∗L)

Taking the total differential in a neighborhood of s = 0 gives

−D(p∗L)D′(p∗L)dw∗L−w∗L
(
D(p∗L)D′′(p∗L) +D′2(p∗L)

)
dp∗L−4D(p∗L)D′(p∗L)dp∗L−3D

′
(p∗L)D(p∗L) (dp∗L − dw∗L) = 0,

which can be rewritten as

2D′(p∗L)dw∗L−
(
w∗LD

′′(p∗L) + w∗L
D′2(p∗L)

D(p∗L)
+ 7D′(p∗L)

)
dp∗L = 0.
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Thus, we have

dw∗L=

(
w∗LD

′′(p∗L) + 5D′(p∗L)

2D′(p∗L)

)
dp∗L. (30)

As g′(s) = 0 we can write G(ŝ) = g(0)
∫ p∗H
p∗L

D(p)dp. Using this, we can rewrite the

first-order condition of the low-cost retailer as

0 = −

(
(N − 1)2

N
+ 1

)
D2(p∗L)(p∗L − w∗L) +

∫ p∗H

p∗L

D(p)dp
[
D
′
(p∗L)(p∗L − w∗L) +D(p∗L)

]
+

(N − 1)
[
D
′
(p∗L)(p∗L − w∗L) +D(p∗L)

]
g (0)

.

Taking the total differential in a neighborhood of s = 0 gives

0 = −

(
(N − 1)2

N
+ 1

)
D(p∗L)(dp∗L−dw∗L)+(N−1)d

1

g (0)
+D(p∗L)dp∗H−D(p∗L)dp∗L. (31)

Similarly, we can rewrite the first-order condition of the low-cost retailer as

−D2(p∗H)(p∗H−wH)−
[
D
′
(p∗H)(p∗H − wH) +D(p∗H)

] ∫ p∗H

p∗L

D(p)dp+

[
D
′
(p∗H)(p∗H − wH) +D(p∗H)

]
g(0)

= 0.

Taking the total differential in a neighborhood of s = 0 gives

0 = −D2(p∗H)(dp∗H − dwH) +D(p∗H)d
1

g (0)
−D2(p∗H)dp∗H +D(p∗H)D(p∗L)dp∗L,

or

0 = −D(p∗H)(2dp∗H − dwH) + d
1

g (0)
+D(p∗H)dp∗L, (32)

Finally, we consider the first-order condition of the manufacturer for the high-cost whole-

sale price

(1−G(ŝ))

[
w∗HD

′
(p∗H)

∂pH
∂wH

+D(p∗H)

]
+ g(0)D(p∗H)

∂pH
∂wH

[w∗LD(p∗L)− w∗HD(p∗H)] = 0.

This can be rewritten as

(
1

g(0)
−
∫ p∗H

p∗L

D(p)dp

)[
w∗HD

′
(p∗H)

∂pH
∂wH

+D(p∗H)

]
+D(p∗H)

∂pH
∂wH

[w∗LD(p∗L)− w∗HD(p∗H)] = 0,

so that the total differential in a neighborhood of s = 0 yields

w∗LD
′(p∗L)dp∗L +D(p∗L)dw∗L = w∗HD

′(p∗H)dp∗H +D(p∗H)dw∗H ,
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or, using w∗LD
′(p∗L)1

2
+D(p∗L) = 0,

− 2dp∗L + dw∗L = −2dp∗H + dw∗H , (33)

Thus, we should solve the four equations (30), (31), (32) and (33) to solve for the

respective derivatifves. Combining (32) and (33) gives

D(p∗H)(dp∗L − dw∗L) = d
1

g (0)
. (34)

Combined with (30) gives

−D(p∗H)

(
w∗LD

′′(p∗L) + 3D′(p∗L)

2D′(p∗L)

)
dp∗L = d

1

g (0)
,

or

dp∗L = − 1

D(p∗H)

2D′(p∗L)

w∗LD
′′(p∗L) + 3D′(p∗L)

d
1

g (0)
,

and

dw∗L = − 1

D(p∗H)

w∗LD
′′(p∗L) + 5D′(p∗L)

w∗LD
′′(p∗L) + 3D′(p∗L)

d
1

g (0)

Substitute (34) into (31) gives

0 =
(N − 1)

N
(dp∗L − dw∗L) + dp∗H − 2dp∗L + dw∗L

= − 1

N
(dp∗L − dw∗L) + dp∗H − dp∗L

Combined with the expressions for dp∗L and dw∗L gives

dp∗H = − 1

D(p∗H)

(
− 1

N
+

2D′(p∗L)

w∗LD
′′(p∗L) + 3D′(p∗L)

)
d

1

g (0)
.

Substituting all expressions into (33) yields

dw∗H = 2 (dp∗H − dp∗L) + dw∗L

=
2

N
(dp∗L − dw∗L) + dw∗L

= − 1

D(p∗H)

(
− 2

N
+
w∗LD

′′(p∗L) + 5D′(p∗L)

w∗LD
′′(p∗L) + 3D′(p∗L)

)
d

1

g (0)
.

This proves the comparative statics results.

Finally, we prove an equilibrium with wholesale price discrimination exists if s is small

enough. The first part to notice is that the comparative statics results indeed show that

p∗H > p∗L and w∗H > w∗L in a neighborhood of s = 0. Next, we will follow similar steps

as in the proof of Proposition 3 but for both w∗H and w∗L separately to show that the

manufacturer does not want to increase these respective wholesale prices beyond their

equilibrium values. The parts of the proof showing that the manufacturer does not want
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to decrease her wholesale prices and that the retail profit functions are well-behaved are

similar to the proof of Proposition 3 and will not be repeated here.

Like in the proof of Proposition 3 it is clear that the manufacturer does not want to

increase its prices such that all consumers visiting that retailer will continue to search. In

addition, in the range of prices where some consumers continue to buy from a retailer we

need that the second-order derivative of the manufacturer’s profit function with respect

to wi, i = L,H, is negative

2D′(p̃i)
∂p̃i
∂wi

+ wiD
′′(p̃i)

(
∂p̃i
∂wi

)2

+ wiD
′(p̃i)

∂2p̃i
∂w2

i

< 0 for i = L,H and all w > w∗.

From the proof of proposition 6 and the expression for ∂p̃H
∂wH

it follows that in a neighbor-

hood of s = 0 where g(s)→∞ ∂p̃H
∂wH

can be approximated by

∂p̃H
∂wH

≈ 1

2
+

3D′(p∗H)(pH − wH)

−2D(pH)
>

1

2
.

Similarly, in a neighborhood of s = 0 and the expression for ∂p̃L
∂wL

can be approximated by

∂p̃L
∂wL

≈ 1

2
+

3D′(p∗L)(pL − wL)

−2D(pL)
>

1

2
.

Thus, we can argue that in a neighborhood of s = 0 ∂2p̃i
∂w2

i
> 0. Therefore, the second-order

condition is satisfied and the manufacturer does not want to increase her wholesale prices

beyond their equilibrium values.

9 Extensions

In this section we consider two extensions. First, we take up the question, raised in Section

4, of what is the optimal fraction of retailers to give a high wholesale price. Second, we

take up the issue of two-part-tariffs.

9.1 The optimal fraction of retailers getting a high wholesale

price

Let there be a unit mass of retailers and a γ mass of consumers. We denote with α the

share of retailers to whom the manufacturer set a high wholesale price wH . In this case,

a consumer who on his first search encounters a high cost retailer selling at price p∗H ,

believes that the probability that on his next search he will find a low cost retailer is

(1− α). Thus, a consumer will continue to search for a price of p∗L if and only if:

∫ 1

p∗H

D(p)dp < (1−α)

[∫ 1

p∗L

D(p)dp− s

]
+α

[
(1− α)

[∫ 1

p∗L

D(p)dp− 2s

]
+ α

[
(1− α)

[∫ 1

p∗L

D(p)dp− 3s

]
+ ...

]]
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which given that α < 1, yields:

ŝ = (1− α)

∫ p∗H

p∗L

D(p)dp

Similarly, a consumer who on his first search encounters a price pL, in the neighbour-

hood of p∗L, will continue to search for a price of p∗L if and only if:

∫ 1

pL

D(p)dp < (1−α)

[∫ 1

p∗L

D(p)dp− s

]
+α

[
(1− α)

[∫ 1

p∗L

D(p)dp− 2s

]
+ α

[
(1− α)

[∫ 1

p∗L

D(p)dp− 3s

]
+ ...

]]
which given that α < 1, yields:

s < (1− α)

∫ pL

p∗L

D(p)dp

If a high cost retailer deviates to a price pH > p∗H , then his profit will be:

πHr (pH , p
∗
L;w) = γ

(
1− (1− α)

s

∫ pH

p∗L

D(p)dp

)
D(pH)(pH − wH).

Taking FOC wrt pH and substituting pH = p∗H , yields:

− (1− α)D2(p∗H)(p∗H − wH)

s− (1− α)
∫ pH
p∗L

D(p)dp
+
[
D
′
(p∗H)(p∗H − wH) +D(p∗H)

]
= 0. (35)

Therefore, as α→ 0, the equilibrium condition for p∗H becomes the same as under the

case of wholesale price discrimination with a finite number of retailer, where N −m∗ = 1.

−D
2(p∗H)(p∗H − wH)

s−
∫ pH
p∗L

D(p)dp
+
[
D
′
(p∗H)(p∗H − wH) +D(p∗H)

]
= 0.

If a low cost retailer deviates to a price pL with p∗L < pL < p∗H , then his profit will be:

πLr (pL, p
∗
L, pH) = γ

[
1− (1− α)

s

∫ pL

p∗L

D(p)dp+
(1− α)α

(1− α)s

∫ p∗H

pL

D(p)dp

]
D(pL)(pL − wL).
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which when simplified becomes:

πLr (pL, p
∗
L, pH) = γ

[
1− (1− α)

s

∫ pL

p∗L

D(p)dp+
α

s

∫ p∗H

pL

D(p)dp

]
D(pL)(pL − wL).

Taking the FOC wrt pL and substituting pL = p∗L, yields:

− D2(p∗L)(p∗L − w∗L)

s+ α
∫ p∗H
pL

D(p)dp
+
[
D
′
(p∗L)(p∗L − w∗L) +D(p∗L)

]
= 0. (36)

As α→ 0, the equilibrium condition for p∗L becomes the same as for the uniform retail

price p∗.

−D
2(p∗L)(p∗L − w∗L)

s
+
[
D
′
(p∗L)(p∗L − w∗L) +D(p∗L)

]
= 0.

The manufacturer’s profit in equilibrium will thus be:

π(w∗L, w
∗
H) = γ

[
(1− α)

(
1 +

α

s

∫ p∗H

p∗L

D(p)dp

)
w∗LD(p∗L(w∗L)) + α

(
1− (1− α)

s

∫ p∗H

p∗L

D(p)dp

)
w∗HD(p∗H(w∗H))

]

If the manufacturer deviates to one low cost retailer or if he deviates to one high cost

retailer, his profit will be:

π(wL, wH) = γ

[
(1− α)

(
1 +

α

s

∫ pH

pL

D(p)dp

)
wLD(pL(wL)) + α

(
1− (1− α)

s

∫ pH

pL

D(p)dp

)
wHD(pH(wH))

]

Taking the FOC wrt wL and substituting wL = w∗L and wH = w∗H , yields:

(
1 +

α

s

∫ p∗H

p∗L

D(p)dp

)[
D(p∗L(w∗L))w∗L

δpL
δwL

+D(p∗L(w∗L))

]
+
α

s
D(p∗L(w∗L))

δpL
δwL

[w∗HD(p∗H(w∗H))− w∗LD(p∗L(w∗L))] = 0

(37)

As α → 0 condition (3) becomes the same as the equilibrium condition for w∗L in the

finite retailers case.
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Taking the FOC wrt wH and substituting wH = w∗H and wL = w∗L, yields:

(
1− (1− α)

s

∫ p∗H

p∗L

D(p)dp

)[
D(p∗H(w∗H))w∗H

δpH
δwH

+D(p∗H(w∗H))

]
+

(1− α)

s
D(p∗H(w∗H))

δpH
δwH

[w∗LD(p∗L(w∗L))− w∗HD(p∗H(w∗H))] = 0

(38)

As α→ 0 condition (4) becomes the same as the equilibrium condition for w∗H in the

finite retailers case.

Taking the FOC wrt α, yields:

1

s

∫ p∗H

p∗L

D(p)dp
(

(1−α)w∗LD(p∗L(w∗L))+αw∗HD(p∗H(w∗H))
)
−w∗LD(p∗L(w∗L))

(
1 +

α

s

∫ p∗H

p∗L

D(p)dp

)

+ w∗HD(p∗H(w∗H))

(
1− (1− α)

s

∫ p∗H

p∗L

D(p)dp

)
= 0 (39)

Making use of equations: (1), (2), (3), (4) and (5), we obtain the following outcomes:

Fig 1. Retail and wholesale prices under price discrimination for different values of s
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Fig 2. Optimal share of high cost retailers under price discrimination for different values

of s

9.2 Two-part-tariffs

We now investigate how allowing the monopolist manufacturer to have the possibility

of choosing two-part tariffs affects our results. Clearly, if the manufacturer has all the

bargaining power, then he will set a wholesale price that induces the retailers to choose the

integrated monopolist price and set a fixed fee equal to the retail profit. Wholesale price

discrimination does not add to the manufacturer’s profit in this case. In most markets,

however, the bargaining power is not exclusively with the manufacturer, however. In

this subsection, we exogenously fix the relative bargaining power and denote by α the

bargaining power of a given retailer, where α measures the share of the retail profit, the

retailer can keep for himself. We, first consider the case of wholesale price commitment

with two-part tariffs and later on also the case of non-commitment.

9.2.1 Full Commitment

In this setting, in an equilibrium under the uniform pricing scheme, an individual retailer’s

profit will be:

π∗r(p
∗) =

α

N
D(p∗(w∗))(p∗ − w∗).

Whereas, the monopolist manufacturer’s profit in equilibrium is given by:

π(w∗) = w∗D(p∗(w∗)) + (1− α)(p∗ − w∗)D(p∗(w∗))

Thus, if α = 0, the manufacturer extracts all profits from its retailers and if α = 1,

then the profits will be the same as in the previous sections. It is clear that with this

formulation, the retailer’s problem is identical to the one analyzed in the previous Sections
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and thus the equilibrium condition for the retail price remains the same as before. On

the other hand, the equilibrium condition for the uniform wholesale price changes since

the manufacturer now directly maximizes:

π(w) = wD(p(w)) + (1− α)(p− w)D(p(w))

Thus, with uniform pricing under full commitment and two-part tariffs the wholesale

price w is set such that:

wD′(p(w))
δp∗

δw
+D(p(w))+(1−α)

[
(p− w)D′(p(w))

δp∗

δw
+ (

δp∗

δw
− 1)D(p(w))

]
= 0. (40)

Fig 9.1 Uniform retail and wholesale prices for different values of s, when α = 1

Fig 9.2 Uniform retail and wholesale prices for different values of s, when α = 0.1

Under wholesale price discrimination the manufacturer with two-part tariffs, the man-

ufacturer will chose two different wholesale prices, wL and wH , to directly maximize:
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π(wL, wH) =
1

N
[1−G(ŝ)] [wHD(p∗H(wH)) + (1− α)(p∗H − wH)D(p∗H(wH))]

+
N − 1 +G(ŝ)

N
[wLD(p∗L(wL)) + (1− α)(p∗L − wL)D(p∗L(wL))]

which yields the two following first-order conditions:

0 = [wHD(p∗H) + (1− α)(p∗H − wH)D(p∗H)− wLD(p∗L)− (1− α)(p∗L − wL)D(p∗L)]

(
D(p∗L)

∂p∗L
∂w∗H

−D(p∗H)
∂p∗H
∂w∗H

)
+
N − 1 +G(ŝ)

g(ŝ)

[
wLD

′(p∗L)
∂p∗L
∂w∗H

+ (1− α)

(
∂p∗L
∂w∗H

D(p∗L) + (p∗L − wL)D′(p∗L)
∂p∗L
∂w∗H

)]
+

[1−G(ŝ)]

g(ŝ)

[
D(p∗H) + wHD

′(p∗H)
∂p∗H
∂w∗H

+ (1− α)

(
(
∂p∗H
∂w∗H

− 1)D(p∗H) + (p∗H − wH)D′(p∗H)
∂p∗H
∂w∗H

)]
and

0 = [wHD(p∗H) + (1− α)(p∗H − wH)D(p∗H)− wLD(p∗L)− (1− α)(p∗L − wL)D(p∗L)]

(
D(p∗L)

∂p∗L
∂w∗L

−D(p∗H)
∂p∗H
∂w∗L

)
+
N − 1 +G(ŝ)

g(ŝ)

[
D(p∗L) + wLD

′(p∗L)
∂p∗L
∂w∗L

+ (1− α)

(
(
∂p∗L
∂w∗L

− 1)D(p∗L) + (p∗L − wL)D′(p∗L)
∂p∗L
∂w∗L

)]
+

[1−G(ŝ)]

g(ŝ)

[
wHD

′(p∗H)
∂p∗H
∂w∗L

+ (1− α)

(
∂p∗H
∂w∗L

D(p∗H) + (p∗H − wH)D′(p∗H)
∂p∗H
∂w∗L

)]

Fig 9.3 Retail and wholesale prices under wholesale price discrimination for different

values of s and α = 1
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Fig 9.4 Retail and wholesale prices under wholesale price discrimination for different

values of s and α = 0.1

Fig 9.5 Manufacturer’s Profit for different values of s and α = 1

Fig 9.6 Manufacturer’s Profit for different values of s and α = 0.1

56



Fig 9.7 Manufacturer’s Profit for different values of s and α = 0.000001

57



9.2.2 No Commitment

On the other hand, under no commitment, the manufacturer’s profit in case of deviation

will be:

π(w∗, w′) =

(
N − 1

N
+

1

Ns

∫ p̃(w)

p∗(w∗)

D(p)dp

)
[w∗D(p∗(w∗) + (1− α)(p∗ − w∗)D(p∗(w∗))] +

1

N

(
1− 1

s

∫ p̃(w)

p∗(w∗)

D(p)dp

)
[wD(p̃(w)) + (1− α)(p̃− w)D(p̃(w))] ,

so that the equilibrium condition on the wholesale price becomes:

w∗D′(p̃(w∗))
δp̃

δw
+D(p̃(w∗))+(1−α)(p∗−w∗)D′(p̃(w∗)) δp̃

δw
+(1−α)D(p̃(w∗))

(
δp̃

δw
− 1

)
= 0.

Under wholesale price discrimination, the retailers’ analysis remains gain the same as

in Section 4 and the manufacturer’s profit in case of deviation will be:

1

N

1 +

∫ pH(wH)

p∗L(wL)
D(p)dp

(N − 1)s
− N − 1

Ns

∫ p̃L(wL)

p∗L

D(p)dp−

∫ p̃L(wL)

p∗L
D(p)dp

(N − 1)s

 [wLD(p̃L(wL)) + (1− α)(p̃− wL)D(p̃(wL))]

+
N − 2

N

1 +

∫ pH(wH)

p∗L
D(p)dp

(N − 1)s
+

∫ p̃L(wL)

p∗L
D(p)dp

(N − 1)(N − 2)s
+
N − 1

Ns

∫ p̃L(wL)

p∗L

D(p)dp

 [w∗LD(p∗L(w∗L)) + (1− α)(p∗L − w∗L)D(p∗L(w∗L))]

+
1

N

(
1− 1

s

∫ pH(wH)

p∗L

D(p)dp

)
[wHD(pH(wH)) + (1− α)(pH − wH)D(pH(wH))]

The equilibrium wholesale price condition for w∗L thus becomes:

w∗LD
′(p̃(w∗L))

δp̃L
δwL

+D(p̃L(w∗L))+(1−α)(p∗L−w∗L)D′(p̃L(w∗L))
δp̃L
δwL

+(1−α)D(p̃L(w∗L))

(
δp̃L
δwL

− 1

)
= 0

while for w∗H the condition becomes

1

s
D(p∗H(w∗H))

δpH
δwH

[w∗LD(p∗L(w∗L)) + (1− α)(p∗L − w∗L)D(p∗L(w∗L))− w∗HD(p∗H(w∗H))− (1− α)(p∗H − w∗H)D(p∗H(w∗H))]

+

(
1− 1

s

∫ p∗H

p∗L

D(p)dp

)[
w∗HD

′(p∗H(w∗H))
δpH
δwH

+D(p∗H(w∗H)) + (1− α)(
δpH
δwH

− 1)D(p∗H(w∗H)) + (1− α)(p∗H − w∗H)D′(p∗H(w∗L))
δpH
δwH

]
= 0.

The following figures illustrates that for any α > 0, the qualitative results of our

analysis for linear pricing continue to hold and that wholesale price discrimination results

in higher profit for the manufacturer and lower retail profit and consumer surplus.

58



Figure 6.1 Manufacturer’s Profit under the two-part tariff case: α = 0.5

Figure 6.2 Manufacturer’s Profit under the two-part tariff case: α = 0.1
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9.3 Profit Functions

9.3.1 Uniform pricing, no commitment, linear demand, uniform distribution

Figure 8.1. Manufacturer’s profits for different values of w when s = 0.01, w∗ = 0.6245.

Figure 8.2. Manufacturer’s profits for different values of w when s = 0.03, w∗ = 0.5673.

Figure 8.3. Manufacturer’s profits for different values of w when s = 0.05, w∗ = 0.5284.
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Figure 8.4. Retailer’s profits for different values of p̃ when s = 0.01, p∗ = 0.6510.

Figure 8.5. Retailer’s profits for different values of p̃ when s = 0.03, p∗ = 0.6343.

Figure 8.6. Retailer’s profits for different values of p̃ when s = 0.05, p∗ = 0.6270.
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9.3.2 Price discrimination, no commitment, linear demand, uniform distri-

bution

Figure 8.7. Manufacturer’s profits for different values of w when s = 0.01.

Figure 8.8. Manufacturer’s profits for different values of w when s = 0.01.

Figure 8.9. Manufacturer’s profits for different values of w when s = 0.01.
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Fig 4.3 Demand given by D(p) = (1− p)β, where β = 0.5.

Fig 4.4 Demand given by D(p) = (1− p)β, where β = 1.

Fig 4.5 Demand given by D(p) = (1− p)β, where β = 1.5.
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