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Abstract. In this paper we analyze peak-load pricing in the presence of
network constraints. In our setup, firms facing fluctuating demand decide on
the size and location of production facilities. They make production decisions
constrained by the invested capacities, taking into account that market prices
reflect scarce transmission capacities. We state general conditions for existence
and uniqueness of the market equilibrium and provide a characterization of
equilibrium investment and production. The presented analysis covers the cases
of perfect competition and monopoly—the case of strategic firms is approxi-
mated by a conjectural variations approach. Our result is a prerequisite for
analyzing regulatory policy options with computational multilevel equilibrium
models, since uniqueness of the equilibrium at lower levels is of key importance
when solving these models. Thus, our paper contributes to an evolving strand
of literature that analyzes regulatory policy based on computational multilevel
equilibrium models and aims at taking into account individual objectives of
various agents, among them not only generators and customers but also, e.g.,
the regulator deciding on network expansion.

1. Introduction

The peak-load pricing literature analyzes investment incentives in industries
where demand is fluctuating and storability of the output is limited; see Crew et al.
(1995) for an overview. In such an environment firms will find it optimal to invest
in a differentiated portfolio of base- and peak-load technologies. For the case of
perfectly competitive markets, the unique equilibrium of this game is welfare optimal,
i.e., firms take the right investment and production decisions. The approach of
peak-load pricing is currently extensively used to analyze electricity markets, e.g.,
by Murphy and Smeers (2005) or Joskow and Tirole (2007), and many others.

The scope of this paper is to extend existence and uniqueness results of the
peak-load pricing literature to the case where producers and consumers interact on a
network. This is an important contribution to the literature on liberalized electricity
markets, where typically private firms decide on investment and production, guided
by incentives from spot market trading. In such an environment an adequate model
of peak-load pricing on a network must account for the network constraints that
the agents face at the spot markets whenever they are reflected in the spot market
prices. The ability to establish a unique solution of this game is a prerequisite to
meaningfully analyze complementary decisions taken by other agents—such as the
regulator’s decisions on network expansion or the regulatory framework itself; see
e.g., the analysis in Grimm et al. (2015).

In this paper we propose a framework that captures trading at spot markets, where
market prices reflect scarce network capacities. Demand at each node is fluctuating.
We analyze a setup where firms decide on size and location of production facilities
and make production decisions that are constrained by the invested capacities,
taking into account regionally differentiated prices reflecting network constraints.
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We provide general conditions that allow to establish uniqueness of the resulting
market equilibrium under perfect competition, characterize this equilibrium, and
provide an intuitive example. In an extension we show that our results still hold
if strategic behavior of firms is approximated based on the conjectural variations
approach, analogously to the approach chosen, e.g., by Wogrin et al. (2013).

To the best of our knowledge, our contribution is the first to establish uniqueness of
the peak-load pricing equilibrium on a network. This is an important cornerstone to
the multilevel analysis of situations where competitive firms have to make production
and investment decisions facing network constraints. As it is well acknowledged
in the literature, multiple solutions of lower level problems hinder the solution,
interpretation, and comparison of results obtained in a multilevel context; see,
e.g., Dempe (2002), Colson et al. (2007), or Gabriel et al. (2012).1 Our result is
thus important to meaningfully analyze energy policy options in computational
equilibrium models, which include network expansion plans or alternative regulatory
regimes.

It should be noted that our approach takes into account scarce transmission
capacity of each network link for any network structure. Our current results do
not cover cases where further technical constraints, that might impose additional
restrictions on the feasibility of physical flows, are reflected in spot market prices.
A prominent example is the consideration of a fully-fledged physical model upon
the determination of spot market prices, as it is practiced in a system with nodal
pricing. Since the consideration of more complex flow models is out of scope of this
paper, it is a topic of future research.

Our work contributes to several strands of literature. First, it directly extends
the peak-load pricing literature to peak-load pricing on a network. The seminal
contributions to the analysis of peak-load pricing date back to Boiteux (1949) and
Steiner (1957). For a more recent summary of the main findings and contributions
see Crew et al. (1995). These contributions establish existence and uniqueness of
the perfectly competitive market equilibrium in the absence of network constraints.
More recently this literature has also been extended to the case of strategic firms,
e.g., by Murphy and Smeers (2005), Hu and Ralph (2007), Zöttl (2010), Grimm
and Zöttl (2013), or Wogrin et al. (2013). Only Zöttl (2010) and Grimm and
Zöttl (2013) consider specific conditions that guarantee uniqueness of the resulting
market equilibrium with strategic firms. In the general case with multiple and
discrete production technologies, however, uniqueness cannot be obtained in a
framework with strategic firms, not even in the absence of network restrictions. In
our contribution we thus chose to approximate the case of strategic interaction by a
conjectural variations approach, similar to the one applied recently by Wogrin et al.
(2013), which allows to establish a unique solution.

Our article also contributes to the literature on market interaction in the presence
of network constraints. This literature dates back to early contributions by Vickrey
(1971) and Bohn et al. (1984), who were among the first to study optimal pricing
on a network with several spatially located consumers and producers. Hogan (2012)
or Chao and Peck (1996) build on those seminal contributions to analyze optimal
transmission pricing in electricity markets under nodal pricing—a regime that
nowadays is used in various electricity markets in the US, Canada, and some other
countries. European and Australian electricity markets, however, predominantly
use a system of zonal prices, where only predetermined “available transfer capacities”

1The problem of multiplicity plagues the literature on computational multilevel analysis and is
addressed in various different ways. Several recent articles try to find ways allowing to at least
partially overcome the problems induced by multiplicity of lower-level solutions. Compare, e.g.,
Ralph and Xu (2011) for two-stage stochastic programs or Huppmann and Egerer (2015) and Ruiz
and Conejo (2015), which apply a specific equilibrium selection mechanism.
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between zones are taken into account upon trading at the spot market. For a
discussion also see Pérez-Arriaga and Olmos (2005), Ehrenmann and Smeers (2005),
or Ehrenmann and Neuhoff (2009). All those studies do not focus on uniqueness
of the problem under consideration and most importantly abstract from firms’
endogenous choice of production capacities, which is at the heart of our analysis.

The paper is organized as follows. In Sect. 2 we introduce the notation used
throughout the paper and the considered peak-load pricing model is stated. Moreover,
an equivalent reformulation of this model is given, which is used in Sect. 3 to prove
the uniqueness of solutions of the peak-load pricing framework. Section 4 provides
an illustrative example of our findings. Finally, Sect. 5 concludes and states some
topics of further research.

2. A Framework of Peak-Load Pricing on a Network

2.1. Notation and Model Formulation. We consider a general transport net-
work modeled by a connected and directed graph G = (N,A) with node set N
and arc set A. Flow on arc a is denoted by fa, which is limited by the arc capac-
ity f+

a ∈ R+, i.e., |fa| ≤ f+
a . Throughout the paper we make use of the standard

δ-notation, i.e., the set of in- and outgoing arcs of a node set M ⊆ N is given by

δin(M) := {a = (m,n) ∈ A : m /∈M,n ∈M},
δout(M) := {a = (n,m) ∈ A : n ∈M,m /∈M}.

The time horizon (or scenario set) that we consider in our peak-load pricing frame-
work is given as an interval T = [t0, te] ⊂ R with t0 < te. Demand dt,n ≥ 0 is
located at every node n ∈ N . Elastic demand at node n ∈ N and time t ∈ T is
modeled by a continuous function pt,n : R+ → R. For later reference we note the
following additional assumption on the demand functions:

Assumption 1. All demand functions pt,n(d) are strictly decreasing, i.e.,
p′t,n(d) < 0.

Under Assumption 1, we can specify the definition of our demand functions to
pt,n : [0, d+

t,n] → R+, where d+
t,n is the unique root of pt,n. Further note that the

gross consumer surplus, which is defined as∫ dt,n

0

pt,n(x) dx,

is concave under Assumption 1.
Moreover, at every node n ∈ N a production technology is located that is

characterized by its variable production costs cvar
n ∈ R+ and its capacity investment

costs cinv
n ∈ R+. Production at time t ∈ T is denoted by yt,n ∈ R+ and capacity by

ȳn ∈ R+, i.e., capacity is constant over time. Since actual production is nonnegative
and restricted by the corresponding capacity, we have 0 ≤ yt,n ≤ ȳn. We remark
that we analyze a perfectly competitive environment, i.e., all firms are price takers.2

Again, for later reference, we formalize an additional assumption on the variable
production costs.

Assumption 2. All variable production costs cvar
n , n ∈ N , are pairwise distinct.

2Under the assumption of strategic firms it is easy to show that multiple equilibria would
obtain in the present setup. Typically, papers that focus on strategic interaction analyze much
simpler frameworks—and often still find multiple equilibria. Since the focus of our paper is to
show uniqueness of the market game (in order to develop a basis to analyze policy proposals with
computational equilibrium setups), we have to restrict attention to the case of perfect competition.
In order to shed lights on a world with positive markups, in Sect. 3.3 we use a simplified approach
that draws on the idea of conjectural variations; see, e.g., Giocoli (2003).
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We now state the optimization model that is considered throughout the paper.
Basically, we want to solve the multicriteria optimization problem, in which every
firm (located at node n ∈ N) maximizes its profit

χn :=

∫ te

t0

pt,n(dt,n)dt,n dt−
∫ te

t0

cvar
n yt,n dt− cinv

n ȳn

subject to the set of common constraints∑
a∈δin(n)

ft,a −
∑

a∈δout(n)

ft,a − dt,n + yt,n = 0 for all t ∈ T, n ∈ N, (1a)

−f+
a ≤ ft,a ≤ f+

a for all t ∈ T, a ∈ A, (1b)
0 ≤ yt,n ≤ ȳn for all t ∈ T, n ∈ N, (1c)

0 ≤ dt,n for all t ∈ T, n ∈ N. (1d)

Constraint (1a) models flow balance for every node in every scenario. Constraint (1c)
states production restrictions according to capacity investment and (1b) ensures that
flow on arcs does not exceed the corresponding arc capacities. Note that capacity
investment decisions are taken once for every node and are thus independent of a
specific time t. Here and in what follows, quantities without node or arc indices
denote the vector of the corresponding quantities; e.g., d := (dt,n)t∈T,n∈N is the
vector of demands at all times t ∈ T and all nodes n ∈ N . Thus, the considered
multicriteria optimization problem reads

max
d,y,ȳ,f

(χn(d, y, ȳ, f))n∈N s.t. (1). (2)

Note that due to the assumption of perfect competition ∂dt,npt,n = 0 holds. In
this case, by the first theorem of welfare economics, the above model yields the
same outcome as the corresponding welfare maximization problem:

max
d,y,ȳ,f

∫ te

t0

∑
n∈N

∫ dt,n

0

pt,n(x) dx dt−
∫ te

t0

∑
n∈N

cvar
n yt,n dt−

∑
n∈N

cinv
n ȳn (3a)

s.t.
∑

a∈δin(n)

ft,a −
∑

a∈δout(n)

ft,a − dt,n + yt,n = 0 for all t ∈ T, n ∈ N, (3b)

− f+
a ≤ ft,a ≤ f+

a for all t ∈ T, a ∈ A, (3c)
0 ≤ yt,n ≤ ȳn for all t ∈ T, n ∈ N, (3d)
0 ≤ dt,n for all t ∈ T, n ∈ N. (3e)

Note that the objective function (3a) models total social welfare, which is the
difference of gross consumer surplus aggregated over all scenarios (first term) and
production as well as capacity investment costs (second and third term). The
equivalence can be easily shown by comparing the KKT conditions of the multicriteria
optimization problem (2) with the KKT conditions of the welfare optimization
problem (3). We refer the interested reader to Ehrgott (2006) for a discussion of
KKT conditions of multicriteria models.

We remark that we choose to state our peak-load pricing model (3) in continuous
time since it allows a more straight forward formulation of the theory presented in
Sect. 3; see, e.g., Assumptions 3 and 4.

Model (3) is a concave optimization problem over a polytopal feasible set, where
the boundedness follows from the production constraints (3d).

2.2. Model Reformulation. Our goal is to show that the presented peak-load
pricing framework has a unique solution. To this end, we equivalently reformulate
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Model (3) as

max
ȳ

ψ(ȳ) :=

∫ te

t0

φt(ȳ) dt−
∑
n∈N

cinv
n ȳn, (4)

where φt(ȳ) is defined as the optimal value function of the subproblem for fixed
time t:

φt(ȳ) := max
dt,yt,ft

∑
n∈N

∫ dt,n

0

pt,n(x) dx−
∑
n∈N

cvar
n yt,n (5a)

s.t.
∑

a∈δin(n)

ft,a −
∑

a∈δout(n)

ft,a − dt,n + yt,n = 0 for all n ∈ N,

(5b)

− f+
a ≤ ft,a ≤ f+

a for all a ∈ A, (5c)
0 ≤ yt,n ≤ ȳn for all n ∈ N, (5d)
0 ≤ dt,n for all n ∈ N. (5e)

Note that the master problem (4) is an unconstrained optimization problem and
does not explicitly depend on the network flow model. Subproblem (5) is a again a
concave maximization problem over a polytopal feasible set in which the capacity
investments are fixed.

This reformulated model has a strong similarity to a two-stage stochastic program.
If we interpret the time integral (after normalization) as the expected welfare we
see that in the first stage we choose long-term capacity investments which then
parameterize the second stage, in which production and demand realize in dependence
on the scenarios.

3. Existence and Uniqueness

Since existence of solutions is trivial (e.g., (d, y, f) = (0, 0, 0) is always feasible),
we focus on uniqueness of the solution. To this end, we exploit the decomposition
into a master- and a subproblem introduced in Sect. 2.2. First, we prove uniqueness
of the Subproblem (5) in Sect. 3.1 and then show, using this result, the uniqueness
of the master problem (4) in Sect. 3.2. By this, it directly follows that the original
model (3) has a unique solution.

3.1. The Subproblem. We begin our considerations about the subproblem with
the repetition of the simple observation that the subproblem is a concave maximiza-
tion problem over a flow polyhedron with additional restrictions on the production
variables y.3 The latter implies that the feasible set is a polytope. By concavity
of the objective function and convexity of the feasible set, we have the following
lemma.

Lemma 1. Suppose Assumption 1 holds. Then, exactly one of the two following
cases occurs:

(1) There exist demands d∗ and productions y∗ such that every optimal solution
of Subproblem (5) is of the form (d∗, y∗, f) for some flow f .

(2) Subproblem (5) has an infinite family of optimal solutions (dλ, yλ, fλ) for
λ ∈ [0, 1] of the form

(dλ, yλ, fλ) := λ(d1, y1, f1) + (1− λ)(d0, y0, f0),

where (d0, y0, f0) and (d1, y1, f1) are solutions to Subproblem (5) with
(d0, y0) 6= (d1, y1).

3For the sake of simplicity, we drop the index t in this section. That is, e.g., y = (yt,n)n∈N for
the currently considered t ∈ T .
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The next step is to show that it is sufficient to prove that there is a unique
solution if we fix the binding inequalities. For this, we define sets of active indices
in dependence of a feasible point z := (d, y, f):

A−f (z) := {a ∈ A : fa = −f+
a }, A+

f (z) := {a ∈ A : fa = f+
a },

A−y (z) := {n ∈ N : yn = 0}, A+
y (z) := {n ∈ N : yn = ȳn},

A−d (z) := {n ∈ N : dn = 0}.
We can now state the following lemma:

Lemma 2. Suppose Assumption 1 holds. Then, exactly one of the two following
cases occurs:

(1) There exist demands d∗ and productions y∗ such that every optimal solution
of Subproblem (5) is of the form (d∗, y∗, f) for some flow f .

(2) There exist two optimal solutions z′ := (d′, y′, f ′) and z′′ := (d′′, y′′, f ′′) of
Subproblem (5) with (d′, y′) 6= (d′′, y′′) and

A−y (z′) = A−y (z′′), A+
y (z′) = A+

y (z′′),

A−f (z′) = A−f (z′′), A+
f (z′) = A+

f (z′′),

A−d (z′) = A−d (z′′).

This lemma follows directly by combining Lemma 1 and the following observation:
In the interior of the solution segment from the second case of Lemma 1, the binding
patterns coincide, hence we can always choose suitable solutions. This can can be
deduced from the following proposition.

Proposition 1. Let zλ := (dλ, yλ, fλ) be an infinite family of optimal solutions for
λ ∈ [0, 1] of the form

(dλ, yλ, fλ) := λ(d1, y1, f1) + (1− λ)(d0, y0, f0).

Let cT z ≤ r be a linear inequality such that cT zλ ≤ r holds for all λ ∈ [0, 1]. Then,
exactly one of the following cases occurs:

(1) cT zλ = r for all λ ∈ [0, 1],
(2) cT zλ < r for all λ ∈ (0, 1).

Proof. By the definition of zλ we can write cT zλ = λcT z1 + (1− λ)cT z0. This leads
to the following observations: If cT z0 = cT z1 = r, we are in Case 1 and if cT z0 < r
and cT z1 < r both hold, we are in Case 2. Hence, it remains to treat the case where
exactly one of cT z0 = r or cT z1 = r holds. Without loss of generality we assume
that cT z0 = r and cT z1 < r hold. Then, for λ > 0 we have

cT zλ = λcT z1 + (1− λ)cT z0 = λcT z1 + (1− λ)r < λr + (1− λ)r = r.

Thus, we are in Case 2. �

For the following it is advantageous to use the concept of price clusters.

Definition 1. Given a solution z of Subproblem (5), we say that a partition
C = {Ci}Ii=1 partitions the node set N into price clusters, if for all C ∈ C holds,
that for all nodes in the cluster C the shadow prices of the flow conservation
constraints (i.e., the dual variables of Constraints (5b)) are equal. We also write
C(z) to emphasize the dependence on the solution z. An arc a = (n,m) is called
an inter-cluster arc, if n ∈ Ci and m ∈ Cj with i 6= j and we denote the set of
inter-cluster arcs by Ainter.

We now want to use a result shown by Schewe and Schmidt (2015) in a slightly
different situation; namely that price clusters of the network are characterized by
the binding constraints in (5c). For this we introduce another partition.
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Definition 2. Given a solution z of Subproblem (5), we say that the partition
C = {Ci}Ii=1 of the node set N is the flow-induced partition, if each Ci is a connected
component of the graph G̃(z) = (V,A \Asat), where Asat := {a ∈ A : |fa| = f+

a }.
With this definition, the required result reads as follows:

Theorem 1. Let z∗ := (d∗, y∗, f∗) be an optimal solution of Subproblem (5) and
let C(z∗) be the corresponding flow-induced partition. Then,

φ(ȳ) = max
d,y

∑
n∈N

∫ dn

0

pn(x) dx−
∑
n∈N

cvar
n yn (6a)

s.t.
∑
n∈C

dn −
∑
n∈C

yn = f̂C for all C ∈ C(z∗), (6b)

0 ≤ yn ≤ ȳn for all n ∈ N, (6c)
dn ≥ 0 for all n ∈ N, (6d)

where f̂C =
∑
a∈δin(C) f

+
a −

∑
a∈δout(C) f

+
a is the total in- or outflow of zone C.

This implies that C(z∗) is a partition into price clusters.

Proof. The proof is given in Appendix A. �

Thus, Lemma 2 combined with the cited result states that whenever there exist
two different optimal solutions, there also exist two different solutions with the same
price clusters. Moreover, the flows between these clusters are unique since they are
at their bounds.

Lemma 3. Suppose Assumption 1 holds. Then, exactly one of the two following
cases occurs:

(1) There exist demands d∗ and productions y∗ such that every optimal solution
of Subproblem (5) is of the form (d∗, y∗, f) for some flow f .

(2) There exist two optimal solutions z′ := (d′, y′, f ′) and z′′ := (d′′, y′′, f ′′) of
Subproblem (5) with (d′, y′) 6= (d′′, y′′) such that
(a) C(z′) = C(z′′) and
(b) for z′ and z′′ it holds that Constraint (5c) is tight for an arc a if and

only if a is an inter-cluster arc.

Proof. The lemma follows directly from Lemma 2 with the following additional
argument: Assume there exists an arc a = (n,m) with a ∈ A+

f (z′) and a is not an
inter-cluster arc, that is n,m ∈ C for some C ∈ C. We show that we can modify
solution z′ so that we obtain an optimal solution z̃′ with the same activity pattern
with the exception that A+

f (z̃′) = A+
f (z′) \ {a}. As a is not an inter-cluster arc,

there must exist a path P connecting n and m completely lying in cluster C such
that for all a ∈ P it holds that a /∈ A+

f (z′) ∪ A−f (z′), i.e., no flow bound on P is
active. That means it must be possible to send an additional amount of flow ε
along P without violating any bounds. Hence, we can reduce the amount of flow
sent along a by ε/2 and send the same amount along path P . This gives us a new
flow f̃ ′. Set z̃′ := (d′, y′, f̃ ′), then the flow bound for arc a is no longer active. As a
was an arbitrary non-inter-cluster arc, we can iterate this procedure until only flow
bounds on inter-cluster arcs are attained. This can be done with both z′ and z′′
and thus we obtain the desired result. �

The last lemma implies that the ambiguity of solutions have to be “inside” the
price clusters. Thus, we only have to consider these clusters in the following. Since



8 V. GRIMM, L. SCHEWE, M. SCHMIDT, G. ZÖTTL

the network constraints do not play a role within the price clusters, Subproblem (5)
for a single cluster reduces to the concave maximization problem

max
d,y

∑
n∈C

∫ dn

0

pn(x) dx−
∑
n∈C

cvar
n yn (7a)

s.t.
∑
n∈C

dn −
∑
n∈C

yn = f̂C , (7b)

0 ≤ yn ≤ ȳn for all n ∈ C, (7c)
dn ≥ 0 for all n ∈ C, (7d)

where C ⊆ N is the set of nodes of the considered price cluster and f̂C is total in-
or outflow of this cluster; see Theorem 1. The KKT conditions of this problem
comprise the dual feasibility conditions

pn(dn) + α+ γn = 0 for all n ∈ C,
−cvar

n − α+ β−n − β+
n = 0 for all n ∈ C,

where α ∈ R is the dual variable of Constraint (7b), β−n , β+
n , n ∈ N , are the dual

variables of the lower and upper production bounds in (7c), and γn is the dual variable
of the demand bounds (7d). This immediately implies a single price pC := −α with
pC = pn(dn) for all n ∈ C with dn > 0. Nodes n with dn = 0 do not contribute to
the objective value and hence their price can be ignored. Moreover,

pC − cvar
n + β−n − β+

n = 0 (8)

holds for all n ∈ C with dn > 0.
Our goal is now to show that productions and demands inside a cluster are

uniquely determined. The flow values within the price clusters, however, are not
unique, since we can always modify a solution with a flow along a cycle as long as
we stay inside the bounds. However, these ambiguous flows do not interfere with
the optimal demand and production values and thus do not influence the objective
function value. We summarize our findings in the following theorem:

Theorem 2. Suppose Assumptions 1 and 2 hold. Then, there are unique de-
mands d∗C and production y∗C such that every optimal solution of Model (7) has the
form (d∗C , y

∗
C , fC) for some fC .

Proof. Assume that the price inside the price cluster is given by pC . As the demand
functions pn are strictly decreasing and thus bijective, there is a unique demand dn
for every n ∈ C. Hence, there exists a function dC(p) that maps every price p to
the unique aggregate demand at that price point. We define d̂C(p) := dC(p)− f̂C .
As the demand function for each node is strictly decreasing, the aggregated function
d̂C(p) is strictly decreasing as well.

On the production side we can see that given a pC we can immediately determine
(by using Condition (8)) which nodes n ∈ C are definitely not producing (cvar

n > pC),
the ones definitely producing at maximum capacity (cvar

n < pC), and the ones where
the production amount is indeterminate, that is between 0 and ȳn (cvar

n = pC).
Under Assumption 2 there exists at most one node such that cvar

n = pC . Hence for
all nodes except at most one, the price pC uniquely determines the production values
of the nodes. Moreover, we obtain two functions ymin

C (p) and ymax
C (p) which are the

minimal, resp. maximal, production in the price cluster at a given price p. Both
of these functions are monotonically increasing. If we intersect the functions d̂C
and ymin

C , we observe that they have at most one intersection point and analogously
for the functions d̂C and ymax

C . From the construction of ymin
C and ymax

C it then
follows that there is exactly one price p∗C such that ymin

C ≤ d̂C(p∗C) ≤ ymax
C . Hence,
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every optimal solution of our problem yields the same price p∗C . From the discussion
of the first paragraph the uniqueness of the demands then follows directly. For
the production the uniqueness is also clear for all nodes except at most one. The
production of this last node, however, is also uniquely determined by the market
clearing constraint. �

The proof allows us also to conclude that the dual variables β are unique as well;
see Condition (8).

Corollary 1. Suppose Assumption 1 and 2 hold. Then, the values of the dual
variables β±n are unique for all nodes n ∈ N .

All in all, we have the following result concerning Subproblem (5):

Theorem 3. Suppose Assumption 1 and 2 hold. Furthermore, let C = {Ci}Ii=1 be
the unique partition of the node set into price clusters, let Ainter := {a = (n,m) ∈
A : n ∈ Ci,m ∈ Cj , i 6= j} be the set of inter-cluster arcs. Then, the solution (d, y, f)
of Subproblem (5) is unique in (d, y, fAinter).

Proof. By Lemma 3 we need to consider two cases. In the first case we are done.
We need to show that the second case cannot occur. This, however, follows directly
from Theorem 2. �

3.2. The Master Problem. In this section we prove that—given the results of
the preceding section—the master problem (4) has a unique solution. To this
end, we prove that the Hessian H(ȳ) of ψ is negative definite. Since the linear
terms

∑
n∈N c

inv
n ȳn in (4) vanish in second order, the Hessian of ψ is completely

given by the Hessian of the integral terms. Thus, we have to compute the second
derivative H(ȳ) w.r.t. ȳ of ∫ te

t0

φt(ȳ) dt. (9)

We split this section into two parts: In Sect. 3.2.1, we determine the second derivative
w.r.t. ȳ of φt(ȳ) for a fixed time t. The subsequent Sect. 3.2.2 then considers the
second derivative of (9).

3.2.1. The Single-Scenario Case. In this section we compute the Hessian for a fixed
time t, i.e., the Hessian

Ht(ȳ) = ∇2
ȳȳφt(ȳ)

of φt(ȳ). The first-order partial derivatives are known from standard sensitivity
analysis (see, e.g., Boyd and Vandenberghe (2004)) of convex optimization:

∂

∂ȳn
φt(ȳ) = β+

t,n for all n ∈ N,

where β+
t,n is the dual variable corresponding to the upper bound in Constraint (5d).

Thus, we now have to compute the derivative of β+
t,n with respect to ȳm for all

n,m ∈ N . In the following we require a series of partitions of the node set and
the time horizon. An overview over all partitions and subsets is given in Table 1.
For a fixed time t, we obtain a partition Ct(ȳ) = {Ct,i(ȳ)}Iti=1 of the node set N
into price clusters as described in the last section. Now, we consider a single price
cluster Ct,i(ȳ), i.e., we fix some i ∈ {1, . . . , It} for the moment. It can be easily
verified that the first-order conditions of Subproblem (5) imply

β+
t,n =

{
pt,i − cvar

n , if yt,n = ȳn,

0, if yt,n < ȳn,

where pt,i is the price of cluster Ct,i(ȳ). The derivative of β+
t,n w.r.t. ȳm is obviously

zero for every node m ∈ N in the second case. The first case, i.e., the case in which
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Table 1. Subsets of the node set and time horizon as well as
(blocks of) considered Hessian matrices (Remark: All these sets
depend on ȳ)

Set Explanation

Ct,i ⊆ N ith price cluster at time t
Ct = {Ct,i}Iti=1 Partition of the node set into price clusters for time t
At,i ⊆ Ct,i Nodes of price cluster i ∈ {1, . . . , Iτ} in time t with βt,n > 0

T̂ Times t where solutions of Problem (10) do not satisfy
strict complementarity

Tτ ⊆ T Times t with equal price clusters Ct,i
T = {Tτ}τ Price cluster specific time horizon partition
Tτ,j ⊆ Tτ times t with equal price clusters and

equal binding production nodes
{Tτ,j}j Price cluster and active production nodes specific

time horizon subset partition

H Hessian of ψ
Ht Hessian of ψ for a single time t
Hτ Hessians of ψ for the time t ∈ Tτ
Hτ,i Submatrix (block) of Hτ induced by price cluster i
Hτ,i,j Submatrix (block) of Hτ,i induced by active production nodes

yt,n = ȳn with n ∈ Ct,i(ȳ) holds, is more complicated. Let At,i(ȳ) ⊆ Ct,i(ȳ) ⊆ N be
the set of nodes of the price cluster Ct,i(ȳ) that are strictly active, i.e., all nodes
m ∈ N with β+

t,m > 0, which implies yt,m = ȳm. As an auxiliary result we first need
to compute the derivative of the total demand of a single cluster with respect to
the capacity of a single node of that cluster. To this end, we first rewrite Model (7)
for cluster Ct,i(ȳ) using the aggregated demand function Pt,i and the total demand
Dt,i.

φCt,i(ȳ) := max
Dt,i,yt,i

∫ Dt,i

0

Pt,i(x) dx−
∑
n∈Ct,i

cvar
n yt,n (10a)

s.t. Dt,i −
∑
n∈Ct,i

yt,n = f̂t,i, (10b)

0 ≤ yt,n ≤ ȳn for all n ∈ Ct,i, (10c)
Dt,i ≥ 0. (10d)

Proposition 2. Let (D, y;α, β±, γ−) be an optimal solution of Problem (10) such
that strict complementarity holds. Let n∗ ∈ Ct,i(ȳ) be the node with largest variable
costs in cluster Ct,i(ȳ) with yn∗ > 0. If γ− > 0 or β+

n∗ = 0 then
∂D

∂ȳn
= 0 for all n ∈ Ct,i(ȳ).

If, however, γ− = 0 and β+
n∗ > 0 holds, then for all n ∈ Ct,i(ȳ), we have

∂D

∂ȳn
=

{
1, if yn > 0,

0, otherwise.
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Proof. After elimination of the dual variables of Constraint (10b), the KKT condi-
tions of Problem (10) contain the following equations:

P (D)− cvar
n + β−n − β+

n + γ− = 0 for all n ∈ Ct,i(ȳ),

D −
∑
n∈C

yn − f̂t,i = 0,

β−n yn = 0 for all n ∈ Ct,i(ȳ),

β+
n (ȳn − yn) = 0 for all n ∈ Ct,i(ȳ),

γ−D = 0.

This is a system F (x; ȳn) = 0 of equations with x = (D, y, β±, γ−). Since strict
complementarity holds we may apply the implicit function theorem, yielding

JxF · Jȳnx = −JȳnF,
where, e.g., JxF denotes the Jacobian of F with respect to x. Solving this system
of equations yields the claim. �

We observe that

φt(ȳ) =

It∑
i=1

φt,i(ȳ). (11)

holds. Now we are able to compute the second partial derivatives of φt(ȳ).

Lemma 4. Let ȳ and t be given and assume that the solutions of Problem (10)
fulfill strict complementarity for all i ∈ {1, . . . , It}. If n ∈ Ct,i(ȳ) and m ∈ Ct,j(ȳ)
with i 6= j, then

∂

∂ȳm

∂

∂ȳn
φt(ȳ) = 0. (12)

If n,m ∈ Ct,i(ȳ) and γ− > 0 or β+
n∗ = 0, where γ−, β+

n∗ are the respective dual
variables of Problem (10) for cluster Ct,i(ȳ) and n∗ is defined as in Proposition 2,
then

∂

∂ȳm

∂

∂ȳn
φt(ȳ) = 0. (13)

Otherwise, i.e., γ− = 0 and β+
n∗ > 0, we have

∂

∂ȳm

∂

∂ȳn
φt(ȳ) =

{
Bt,i(ȳ), if n,m ∈ At,i(ȳ),

0, otherwise,
(14)

where Bt,i(ȳ) < 0 is the negative slope of the aggregated demand function Pt,i(ȳ) at
the total demand Dt,i(ȳ) of price cluster Ct,i(ȳ).

Proof. Equation (12) follows directly from Equation (11). For the remaining cases
we make the following observation:

∂

∂ȳm

∂

∂ȳn
φt(ȳ) =

∂

∂ȳm
β+
t,n.

The KKT conditions of Problem (10) imply

β+
t,n = Pt,i(Dt,i(ȳ))− cvar

n for all n ∈ Ct,i(ȳ) with yt,n > 0.

Thus, for n ∈ Ct,i with yt,n > 0 we can write
∂

∂ȳm
β+
t,n =

∂

∂ȳm
Pt,i(Dt,i(ȳ)) =

∂

∂Dt,i
Pt,i(Dt,i(ȳ))

∂

∂ȳm
Dt,i(ȳ) = Bt,i(ȳ)

∂

∂ȳm
Dt,i(ȳ),

where Dt,i(ȳ) is the (unique) total demand in an optimal solution of Model (10) for
price cluster Ct,i(ȳ) in dependence on ȳ.

The remaining Equations (13) and (14) follow directly from Proposition 2. �
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D

P (D)

cvarn1

cvarn2

cvarn3

Ȳn1 Ȳn2 Ȳn3

D

P (D)

Ȳn1 Ȳn2 Ȳn3

D

P (D)

Ȳn1 Ȳn2 Ȳn3

Figure 1. Illustration of Proposition 2 and Assumption 3; Ȳi :=∑i
k=1 ȳk. Strict complementarity holds in the left and right figure,

whereas it is violated in the middle case.

We write down the necessary property from the preceding lemma.

Assumption 3. For ȳ let T̂ (ȳ) be set of all t ∈ T such that there exists a price
cluster i ∈ {1, . . . , It} where the unique solution of Problem (10) does not satisfy
strict complementarity. We assume that T̂ (ȳ) has measure zero for all ȳ.

Before we turn to the multi-scenario case, we briefly discuss the mathematical
necessity of Assumption 3 and illustrate the economic interpretation of Proposition 2
and strict complementarity (or its violation) using the example of the production
constraints yn ≤ ȳn and their dual variables β+

n ≥ 0. We again drop the time
index for better readability. Figure 1 illustrates three possible aggregated demand
functions (continuous and strictly decreasing curves) and a single aggregated supply
function for a price cluster. Total demand is positive in all three cases. The price
cluster equilibrium in the first case (left figure) is characterized by the intersection
of the aggregated demand curve and the variable production costs of the second
cheapest producer, say n2. In this case the production of n2 fulfills yn2

∈ (0, ȳn2
),

i.e., β−n = β+
n = 0, and strict complementarity holds. Dual feasibility then yields

P (D) = cvar
n2

, which can also be seen in the left figure. Moreover, it can be seen
that ∂ȳnD = 0 for all nodes n. The other case satisfying strict complementarity
is illustrated in the right figure: For all producing nodes m holds that ym = ȳm.
Moreover, β+

n2
= P (D)− cvar

n2
> 0 (dashed line) is the earning of node n2. The right

figure also illustrates that ∂ȳnkD = 1 for all k ≤ 2 and ∂ȳnkD = 0 for all k > 2
holds; see Proposition 2. The only problematic case is shown in the middle figure:
Aggregated demand intersects aggregated supply at the rightmost point (Ȳn2

) of
producer n2 thus yielding yn2

= ȳn2
and β+

n2
= 0, i.e., strict complementarity does

not hold. The mathematical severity of this case is that ∂ȳnkD does not exist; only
directional derivatives exist and equal cvar

n3
− cvar

n2
> 0 and 0, respectively. Finally,

the middle figure suggests that this is a rare event because it only appears if the
aggregated demand curve intersects the supply curve in a finite number of special
points, i.e., Ȳni , i = 1, 2, . . . , out of a continuum of points.

3.2.2. The Multi-Scenario Case. Up to this point, we have computed the second
derivative for a fixed time t. We now show that the complete Hessian

H(ȳ) =

∫ te

t0

Ht(ȳ) dt

of (4) is negative definite. To this end, we partition the time horizon T in

T (ȳ) = {Tτ (ȳ)}τ ∪ T̂ (ȳ)
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such that for all τ all times t ∈ Tτ (ȳ) have the same price clusters Ct(ȳ). We remark
that there only exist finitely many τ since there also exist only finitely many price
cluster configurations. This allows us to state the following proposition:

Proposition 3. Suppose Assumption 3 holds. Then, the Hessian H(ȳ) can be
written as

H(ȳ) =

∫ te

t0

Ht(ȳ) dt =
∑
τ

∫
Tτ (ȳ)

Ht(ȳ) dt.

Note that the definition of T (ȳ) permits the notations Hτ (ȳ) and Cτ (ȳ). The
following proposition readily follows from (12) and states that an entry of Hes-
sian Ht(ȳ) corresponding to two nodes n,m is zero for all nodes in different price
clusters and t ∈ Tτ (ȳ).

Proposition 4. Let (Ht(ȳ))n,m denote the entry in row n and column m of the
matrix Ht(ȳ). Then for all n,m ∈ N and for all τ we have that

(Ht(ȳ))n,m = 0 for all t ∈ Tτ (ȳ)

if n ∈ Cτ,i(ȳ) and m ∈ Cτ,j(ȳ) with i 6= j.

Note that this proposition yields a block structure of Ht(ȳ), t ∈ Tτ (ȳ), induced
by the price clusters Cτ (ȳ) = {Cτ,i(ȳ)}Iτi=1 at these times. The corresponding matrix
block is denoted by Hτ,i(ȳ) and, after re-ordering of the nodes, we obtain

Ht(ȳ) = diag(Hτ,i(ȳ))Iτi=1.

We now partition the times Tτ (ȳ) further into {Tτ,j(ȳ)}j such that

Ai,j(ȳ) := At,i(ȳ) = At′,i(ȳ)

holds for all t, t′ ∈ Tτ,j(ȳ). The following proposition is a direct consequence of
these partitions.

Proposition 5. For all t, t′ ∈ Tτ,j(ȳ) it holds that

Ht(ȳ)
∣∣
Cτ,i

= Ht′(ȳ)
∣∣
Cτ,i

,

where Ht(ȳ)
∣∣
Cτ,i

denotes the restriction of Ht(ȳ) to the block corresponding to Cτ,i.

This proposition allows us to introduce the notation

Hτ,i,j(ȳ) := Ht(ȳ)
∣∣
Cτ,i

for all t ∈ Tτ,j(ȳ). Moreover, note that Hτ,i,j(ȳ) is a matrix with a left-upper block
with values Bτ,i,j(ȳ) < 0 of size |Ai,j(ȳ)| and zeros elsewhere.

The rest of the proof is split up into two parts. First, we show that all Hes-
sians Hτ,i(ȳ) are negative semi-definite. Second, we show that under additional
assumptions, there exist some Hτ,i(ȳ) that are negative definite. Both results to-
gether finally imply the negative definiteness of the overall Hessian for all ȳ and
thus the peak-load pricing model (3) has a unique solution.

Proposition 6. For all τ and all i, the corresponding block Hτ,i(ȳ) is negative
semi-definite.

Proof. Let τ and i be given. Then, by Proposition 5

Hτ,i(ȳ) =
∑
j

∫
Tτ,j(ȳ)

Ht(ȳ)
∣∣
Cτ,i

dt =
∑
j

µ(Tτ,j(ȳ))Hτ,i,j(ȳ)

holds with Hτ,i,j(ȳ) being rank-1-matrices in which all non-vanishing entries equal
Bτ,i,j(ȳ) < 0. Here, µ(Tτ,j(ȳ)) is the Lebesgue measure of Tτ,j(ȳ) in T . Since Hτ,i(ȳ)
is now shown to be a sum of negative semi-definite matrices, this shows that Hτ,i(ȳ)
itself is negative semi-definite. �



14 V. GRIMM, L. SCHEWE, M. SCHMIDT, G. ZÖTTL

Note that from the latter proposition directly follows that Hτ (ȳ) is negative
semi-definite for all τ , since Hτ (ȳ) is a block-diagonal matrix with blocks Hτ,i(ȳ)

Proposition 7. Let τ and i be given. If the partition {Tτ,j(ȳ)}Jj=1, J = |Cτ,i(ȳ)|,
of Tτ (ȳ) can be chosen so that

Ai,j+1(ȳ) = Ai,j(ȳ) ∪ {nj+1}, Ai,1(ȳ) = {n1}
holds, where the nodes n1, . . . , nJ are ordered in such a way that cvar

nk
< cvar

n`
if and

only if k < ` for all 1 ≤ k, ` ≤ J , and if µ(Tτ,j(ȳ)) > 0 holds for all j, then Hτ,i(ȳ)
is negative definite.

Proof. The partition of the set of times and nodes readily implies

Hτ,i(ȳ) =
∑
j

µ(Tτ,j(ȳ))Hτ,i,j(ȳ) =:
∑
j

H̃τ,i,j(ȳ).

We now define B̃τ,i,j := µ(Tτ,j(ȳ))Bτ,i,j(ȳ). With this notation the following holds:

(H̃τ,i,j(ȳ))ν,ξ =

{
B̃τ,i,j , if ν, ξ ≤ j,
0, otherwise.

We now apply Gaussian elimination: In the kth step we subtract row J − k+ 1 from
all rows 1 to J − k + 2. After J − 1 steps this yields the matrix

B̃τ,i,1
B̃τ,i,2 B̃τ,i,2

...
. . .

B̃τ,i,J−1 · · · B̃τ,i,J−1

B̃τ,i,J · · · B̃τ,i,J

 .

Since all diagonal elements B̃τ,i,j of the resulting matrix are strictly negative the
matrix is negative definite. �

The last proposition leads us to the following assumption:

Assumption 4. There exists a time partition index τ such that for all i = 1, . . . , It,
Tτ (ȳ) can be partitioned as {Tτ,j(ȳ)}Jj=1, J = |Cτ,i(ȳ)|, with

Ai,j+1(ȳ) = Ai,j(ȳ) ∪ {nj+1}, Ai,1(ȳ) = {n1},
where the nodes n1, . . . , nJ are ordered in such a way that cvar

nk
< cvar

n`
if and only if

k < ` for all 1 ≤ k, ` ≤ J and µ(Tτ,j(ȳ)) > 0 holds for all j.

This assumption can be seen as a natural extension of Assumption 2. If our
scenario set does not fulfill the assumption, i.e., informally speaking, that given two
different nodes the following situation occurs: In almost all scenarios where they
are part of the same price cluster they are always both producing at full capacity or
both do not produce at all. In other words, the scenario set is not large enough to
distinguish between these two nodes. Then, it is clear that the solution may not
be unique. With realistic data, however, this should not occur as producers are
sufficiently different and scenario sets are sufficiently large to ensure this condition.

Summing up all results of the last sections, we obtain the following main theorem:

Theorem 4. Suppose Assumptions 1–4 hold. Then, the matrix H(ȳ) is negative
definite and, thus, Model (3) has a unique solution in (d, y, fAinter).
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3.3. The Case of Market Power. As we have argued earlier, it is impossible
to meaningfully analyze the proposed framework using a rigorous game theoretic
approach to strategic interaction among firms. Various papers have shown that
multiple equilibria already arise in a setup with strategic interaction in the absence
of networks; see, e.g., Zöttl (2010). In our contribution we thus chose to approximate
the case of strategic interaction by a conjectural variations approach, similar to the
one applied recently by Wogrin et al. (2013), which allows to establish a unique
solution. While this approach and its outcome cannot be related to a proper game
structure, it nevertheless might be suitable to capture important aspects of an
environment where firms manage to charge significant markups.

To this end, we replace objective function (3a)

ψ1 :=

∫ te

t0

∑
n∈N

∫ dt,n

0

pt,n(x) dx dt−
∫ te

t0

∑
n∈N

cvar
n yt,n dt−

∑
n∈N

cinv
n ȳn

by
ψλ := λψ1 + (1− λ)ψ0, λ ∈ [0, 1], (15)

where

ψ0 :=

∫ te

t0

∑
n∈N

pt,n(dt,n)dt,n dt−
∫ te

t0

∑
n∈N

cvar
n yt,n dt−

∑
n∈N

cinv
n ȳn.

Note that this extension is a convex combination of the situation, in which competi-
tive firms trade on a market (ψ1) and the case of a monopoly (ψ0). It is easily seen
that this extension only affects the demand terms, i.e.,

ψλ = λ

∫ te

t0

∑
n∈N

∫ dt,n

0

pt,n(x) dx dt+ (1− λ)

∫ te

t0

∑
n∈N

pt,n(dt,n)dt,n dt

−
∫ te

t0

∑
n∈N

cvar
n yt,n dt−

∑
n∈N

cinv
n ȳn

holds. In the following, we show that all results presented so far are also valid for
the case of Objective (15) under the following additional assumption:

Assumption 5. All demand functions pt,n(d) fulfill Assumption 1 and the additional
condition p′t,n(d) + p′′t,n(d)d < 0.

We note that in the common case where pt,n is a linear function, Assumption 1
directly implies Assumption 5.

Lemma 5. It holds that

ψλ =

∫ te

t0

∑
n∈N

∫ dt,n

0

pλt,n(x) dxdt−
∫ te

t0

∑
n∈N

cvar
n yt,n dt−

∑
n∈N

cinv
n ȳn,

where
pλt,n(x) := pt,n(x) + (1− λ)p′t,n(x)x.

If pt,n fulfills Assumption 5, then pλt,n fulfills Assumption 1.
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Proof. We only have to consider the demand terms for fixed time t and node n
separately. Then, the proof is a straight forward application of integration by parts:∫ dt,n

0

pλt,n(x) dx =

∫ dt,n

0

pt,n(x) + (1− λ)p′t,n(x)xdx

=

∫ dt,n

0

pt,n(x) dx+ (1− λ)

∫ dt,n

0

p′t,n(x)x dx

=

∫ dt,n

0

pt,n(x) dx+ (1− λ)

(
[pt,n(x)x]

dt,n
0 −

∫ dt,n

0

pt,n(x) dx

)

= λ

∫ dt,n

0

pt,n(x) dx+ (1− λ)pt,n(dt,n)dt,n.

The second claim is immediately clear. �

This lemma shows that the model using the modified objective (15) is simply
the basic peak-load pricing model (3) with demand functions pt,n replaced by pλt,n,
which are again strictly decreasing. Thus, all results from Section 3 also apply to
the model using Objective (15).

3.4. Characterization and Discussion. We now discuss how the optimal solution
of Problem (3) can be characterized. If we analyze the situation of a single scenario,
we observe that prices in neighboring clusters differ by the shadow price of their
saturated connecting arcs. Assume we are given two clusters CP and CC, where CP

supplies more than it demands and CC demands more than it supplies. Then, the
first order conditions of Problem (5) directly imply that on all arcs connecting CP

with CC the flow direction is from CP to CC and that pCP < pCC . Thus, flow goes
from the lower to the higher price.

Focusing on the full problem, we are interested in how investments are taken. We
observe from the first order conditions of Problem (4) that for the optimal solution
holds that

cinv
n =

∫ te

t0

β+
t,n(ȳ) dt. (16)

This means that only those scenarios contribute to the investment costs of a node,
in which the node has variable costs that are strictly lower than the price in its
price cluster, i.e., β+

t,n(ȳ) > 0.
Combining these observations we see that the network structure induces invest-

ment incentives to install capacity close to consumers: The prices for nodes that
consume in many scenarios are high and thus it is interesting to invest there. If the
network exhibits a persistent bottleneck that manifests itself in most scenarios then
investment in capacity on the demand side of that bottleneck will be efficient even
if variable costs for the respective technology is higher.

The comparison to the classical peak-load pricing settings without a network is
instructive. Despite the difference in the respective subproblems (without network
the subproblem reduces to Problem (6) with a single cluster for all times t), the
overall structure (16) of the investment solution is similar. If we have only one price
cluster for all times (i.e., we have “no network”), the investment solution will strictly
prefer nodes with low variable costs irrespective of their position in the network.
This can lead to wildly different investment solutions and may especially lead to
over- resp. underinvestment in the case of persistent bottlenecks.

This immediately suggests that zonal pricing could be used in order to solve
the trade-off between the local distribution of capacity investments and network
expansion. Indeed, several contributions that use the uniqueness result derived in
this paper show that price clusters might adjust incentives in the right direction
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1

Generation: cvar = 1$/MWh, cinv = 2$/MW
Demand: t1 : p = 4− d, t2 : p = 4− d, t3 : p = 2− d

2

Generation:
cvar = 0.75 $/MWh
cinv = 4$/MW
Demand:
t1 : p = 15− d
t2 : p = 8− d
t3 : p = 4− d

3

Generation:
cvar = 0.5 $/MWh
cinv = 6$/MW
Demand:
t1 : p = 8− d
t2 : p = 15− d
t3 : p = 4− d

f+12 = 10MW

f+23 = 2MW

f+13 = 10MW

Figure 2. Three-Node Network

(see, e.g., Grimm et al. (2015) and the references therein). However, price clusters
need to be configured carefully in order to achieve a welfare improvement.

We finally close this section with some technical remarks on the proven results.
First, we remark that all results also apply to the situation in which multiple
producers with different technologies are located at the nodes. This can be easily seen
by introducing an auxiliary node for every producer at the node and by connecting
the auxiliary nodes with the original nodes by arcs with “infinite” capacity. Second,
the results are also valid for the case in which we replace the time continuous time
horizon T = [t0, te] ⊂ R with a discrete set of time periods T = {t0, t1, . . . , te} with
ti < ti+1. However, some of the assumption have to be adjusted accordingly.

At last, we want to mention that more complex flow models, such as a fully-
fledged physical model as it is used to determine nodal prices, does not result in
price clusters. Since our proofs heavily rely on the existence of these clusters, a proof
of uniqueness of solutions of a peak-load pricing model on more complex networks
requires completely different techniques. This is a topic for future research.

4. Illustrative Example: Three-Node Network

In this section we consider a three-node network that illustrates our concepts
and theoretical results. The important features of this example are that the price
clusters change over time and one scenario has non-unique flows. The changing price
clusters can be directly observed in the structure of the Hessians corresponding to
the different scenarios. As depicted in Fig. 2, the three nodes are connected by three
arcs. At the three nodes investment in production capacity can take place with
investment and production costs as shown in the figure. We consider three scenarios
and linear demand functions that vary across these scenarios. The scenarios last 1 h
and all data of the corresponding scenarios are constant during that time. Observe
that demand at node 1 is relatively low in all scenarios. Scenario 1 (scenario 2) is
characterized by the high (low) demand at node 2 and a comparatively low (high)
demand at node 3. In scenario 3 overall demand is low.

Table 2 and 3 list the primal and dual solutions. The optimal solution shows
that it is efficient to install 20 MW of new capacity at node 1, whereas capacity
investment is not profitable at node 2 and 3. In scenario 1, arcs (1, 2) and (2, 3) are
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Table 2. Primal Solution of the Three-Node Network

d1 d2 d3 p1 p2 p3 y1 y2 y3 f12 f23 f13

Scenario 1 2 12 6 2 3 2 20 0 0 10 −2 8
Scenario 2 2 6 12 2 2 3 20 0 0 8 2 10
Scenario 3 1 3 3 1 1 1 7 0 0 3 0 3

Table 3. Dual Solution of the Three-Node Network

α1 α2 α3 β+
1 β+

2 β+
3

Scenario 1 2 3 2 1 2.31 1.87
Scenario 2 2 2 3 1 1.31 2.85
Scenario 3 1 1 1 0 0.32 0.95

saturated. Therefore, in scenario 1 there are two different price clusters, which are
formed by a flow-induced partition (see Definition 2): C1,1 = {2} and C1,2 = {1, 3}.
As can be seen in the tables, both prices (p) and dual variables of corresponding flow
balance constraints (α) are identical for nodes 1 and 3 (see Definition 1). In analogy
to scenario 1, in scenario 2 we also have two price clusters given the saturated
lines (1, 3) and (2, 3). Thus, we have C2,1 = {3} and C2,2 = {1, 2}.

Now consider the last scenario 3, in which no line is saturated. This yields a
single price cluster C3,1 = N . It can be easily seen that the intra-cluster flows are
not unique (see Theorem 2) since adding a small cycle flow is still feasible and does
not change the objective function value.

To show that optimal capacity investment is unique, we next compute the Hessian
of the master problem for the considered example. As stated in Proposition 3, the
Hessian

H =

−1 − 1
2 − 1

2

− 1
2 − 4

3 − 1
3

− 1
2 − 1

3 − 4
3


can be expressed as the sum of the Hessians Ht, t = 1, 2, 3:

H1 =

−
1
2 0 − 1

2

0 − 1
2 0

− 1
2 0 − 1

2

 , H2 =

−
1
2 − 1

2 0

− 1
2 − 1

2 0

0 0 − 1
2

 , H3 =

0 0 0

0 − 1
3 − 1

3

0 − 1
3 − 1

3

 .
The Hessian H is negative definite, i.e., Proposition 7 holds, and thus optimal
production and capacity investment is unique (see Theorem 4).

5. Conclusion

In this paper we have analyzed a framework of peak-load pricing on a network
where competitive firms take investment and production decisions facing network
constraints expressed by fixed inter-zonal capacities. We have shown existence
and uniqueness of the solution and characterized equilibrium investments. We
also presented an approach that sheds light on a market where markups can be
charged—although a full-fledged analysis of strategic interaction is not possible in
our setup.

Our results are an important prerequisite for the analysis of energy policy pro-
posals using multilevel computational equilibrium frameworks. These approaches
can only be meaningfully used if lower-level problems have unique solutions that
restrict feasible solutions at higher levels. This has been emphasized by various
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authors, e.g., Dempe (2002), Colson et al. (2007), or Gabriel et al. (2012). Our
contribution provides such a result for electricity market analyses. In Grimm et al.
(2015) the result is already used in order to analyze optimal transmission expansion
in liberalized electricity markets under different regulatory regimes.
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a restatement of the well-known theorems of Gale and Hoffman for our particular
case, see Schrijver (2003, Chapter 11).
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where f̂C =
∑
a∈δin(C) fa

+ −∑a∈δout(C) fa
+.

The second observation states that if two non-disjoint sets are tight at the upper
bound, its union and intersection are as well. As a byproduct we obtain that in
this case the connecting arcs between these two sets are unused. This result is also
well-known, see again Schrijver (2003).

Proposition 9. Let (d, y, f) be a feasible solution of Problem (5) and let X,Y ⊆ N
with X ∩ Y 6= ∅ such that∑

n∈X
(dn − yn) = f̂X ,

∑
n∈Y

(dn − yn) = f̂Y .

Then the following equations hold as well:∑
n∈X∩Y

(dn − yn) = f̂X∩Y ,
∑

n∈X∪Y
(dn − yn) = f̂X∪Y .

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Set z0 := (d∗, y∗) and let z1 = (d1, y1) be a solution of Prob-
lem (6). As z0 is feasible for Problem (6), φ(z0) ≤ φ(z1) holds. It remains to show
that φ(z0) ≥ φ(z1) holds. If there exists a flow f1 such that (d1, y1, f1) is feasible
for Problem (5), φ(z1) ≤ φ(z0) holds and we obtain the desired inequality. Assume
no such flow exists. Then it follows from Proposition 8 that there exists a set U ⊂ N
with U 6= ∅ such that ∑

n∈U
d1
n −

∑
n∈U

y1
n > f̂U .

From the construction of C it follows from Proposition 9 that we may assume
that U ⊂ C for a C ∈ C. Set U to be the set of all such sets U and define
zλ := (1− λ)z0 + λz1 for λ ∈ [0, 1]. It now follows that there exists a λU > 0 for
each U ∈ U such that zλ satisfies∑

n∈U
dλn −

∑
n∈U

yλn ≤ f̂U .

Set ρ := minU∈U λU . Then, it again follows from Proposition 8 that there exists
a flow f such that (zρ, f) is feasible for Problem (5). Since ρ > 0, it also follows
φ(zρ) > φ(z0), which is a contradiction to the optimality of z∗. Hence, φ(z0) ≥ φ(z1)
holds. �
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