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Abstract

We propose a equilibrium model that allows to analyze the long-run impact of the regulatory environment on
transmission line expansion by the regulator and investment in generation capacity by private firms in liberalized
electricity markets. The model incorporates investment decisions of the transmission operator and private firms in
expectation of an energy-only market and cost-based redispatch. In different specifications we consider the cases
of one vs. multiple price zones (market splitting) and analyze different approaches to recover network cost—in
particular lump sum, generation capacity based, and energy based fees. In order to compare the outcomes of our
multistage market model with a first best benchmark, we also solve the corresponding integrated planner problem.
Using two test networks we illustrate that energy-only markets can lead to suboptimal locational decisions for
generation capacity and thus imply excessive network expansion. Market splitting heals these problems only
partially. These results are valid for all considered types of network tariffs, although investment slightly differs
across those regimes.
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1. Introduction

Following the British privatization in the 1980s, various countries around the world liberalized their electricity
sectors. Today, in most industrialized countries only the transmission network remains regulated while private
firms decide on investment in generation capacities and trade electricity on markets. This structure challenges the
planning of transmission and generation capacity expansion. While an entirely regulated electricity sector allows
for simultaneous transmission and generation expansion planning, in a liberalized market, investment decisions
in transmission and generation capacities are taken by different agents. Investment in generation capacities
is typically made by firms and private investors based on their expectations concerning the future regulatory
environment, taking into account available network facilities. Network expansion, however, is decided on by
regulated firms (or even the regulator), in anticipation of capacity investments by private firms. Traditional
optimization approaches, which only consider integrated transmission and generation expansion planning, reveal
the optimal expansion plan for transmission and generation but do not offer valuable information on how to
achieve those goals in a market environment. In a liberalized market, incentives induced by the interplay of the
market environment and regulation determine whether firms make the appropriate investment choices. As our
results clearly reveal, the proper design of market rules providing adequate incentives in those markets crucially
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matters. Liberalized electricity markets thus call for new tools to inform the various agents involved: regulators,
electricity firms, investors, and other stakeholders.

In this paper we propose a model that allows to analyze investment decisions by the regulator and private
firms in liberalized electricity markets. We model energy-only markets and a regulated transmission operator
(TO) who uses cost-based redispatch to deal with transmission constraints. In a multistage analysis we study
transmission expansion decisions by the regulated TO in anticipation of capacity expansion by private firms. In
different instantiations of our model we analyze the effects of market splitting (one vs. multiple price zones) as
well as different approaches to recover network cost—in particular a lump sum, a generation capacity based, and
an energy based fee. In order to compare the outcomes to a first best benchmark we also solve the integrated
planner problem. For the computational studies we restrict ourselves to solving stylized test cases to illustrate
the applicability of our framework. The results demonstrate that investment choices in a market environment
substantially differ from a first best solution. In our numerical examples the absence of proper locational
investment incentives for firms clearly affects investment choices of generators, which, in turn, leads to excessive
line investment. This shows that our model allows to compare different network management regimes and to
quantify their effects on long-run investment decisions. Our approach is, thus, an important extension of various
studies that have mainly considered the short-run properties of different transmission management regimes;
see the literature review below. As we show, transmission management has also important implications in the
long-run when generation and transmission expansion are taken into account.

Let us emphasize that our approach allows to assess the long-run impact of different transmission management
regimes adopted in liberalized electricity markets around the world. Especially in Europe spot market trading
does not fully account for transmission constraints. In contrast, capacities are shut down and called by the TO in
case that the spot market solution is not technically feasible. Under cost-based redispatch (as it is used in Austria,
Switzerland, or Germany) firms called into operation are just compensated for their variable production cost.
Consequently, redispatch operations cannot contribute to the recovery of investment cost.1 Other liberalized
electricity markets adopted a system of nodal prices (see, e.g., [2]), where spot market prices directly reflect
transmission constraints (e.g., United States, Canada, Australia, or New Zealand), which induces more adequate
incentives for generation capacities by private firms. To at least partially overcome the lack of locational signals
provided by spot market prices, several countries that rely on a system of redispatch have introduced price zones
(e.g., Sweden and Italy). Since the first best solution coincides with the outcome obtained under nodal pricing
in our framework, our approach also allows to assess the long-run benefits of a change to this transmission
management system.

1.1. Literature Review

Prior to the liberalization of electricity sectors around the world, vertically integrated monopolists (either
regulated or directly state owned) were responsible for generation and transmission expansion. Such monopolists
needed insights on the cost minimal configuration of the system. As a consequence, traditionally most of the
contributions proposed frameworks and techniques to determine overall optimal expansion for generation and
transmission facilities; see, e.g., [3], [4], [5], or [6].

In liberalized electricity markets, however, we observe vertical unbundling of transmission and generation
facilities. Thus, in addition to insights on the global optimum of an integrated monopolist, research is needed on
how the market environment affects decisions of different stakeholders. By now a large literature has developed
which analyzes incentives for private and potentially strategic firms to invest in generation facilities. However,
these studies typically assume unlimited transmission capacity; examples are [7], [8], [9], [10], [11], [12], or
[13].

1In contrast, market-based redispatch (used, e.g., in Belgium, Finland, France, or Sweden) yields rents for firms that are called at the
redispatch stage and thus induces incentives to build plants at locations with systematic underprovision. Note that this holds only true for the
case of cost-based redispatch as analyzed in the present article. However, market-based redispatch is plagued by severe gaming problems,
which obtain even for perfectly competitive markets. In the literature this is also often referred to as the inc-dec game. For a discussion of
these issues see, e.g., [1].
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Another recent strand of literature explicitly models both, generation and transmission investment, typically
by making use of bilevel models. [14, 15] are among the first to model investment incentives of generators
and transmission network expansion in a such a way. In their contribution they quantify the impact of whether
transmission investment anticipates resulting investment of strategic generation companies or not. [16] propose a
simulation framework to analyze investment of competitive generation companies and competitive merchant
transmission companies. [17] generalize this framework to also include a transmission system operator as a
further agent. [18] provide a two-stage model of transmission expansion facing uncertain investment in renewable
generation.

[19] and, in an extension, [20] analyze expansion of electricity generation and transmission capacities together
with the expansion of a fuel transportation network. For electricity markets, [21] propose a clear-cut bilevel
framework which considers optimal network expansion by the transmission company, anticipating investment
of competitive generation companies. Also based on a bilevel approach, [22] propose an auction mechanism
to implement optimal investment incentives by transmission companies. Those approaches, however, do not
explicitly take into account the specific structure of the transmission management regime, but implicitly assume
optimal management of the transmission network which is implemented by a regime of locational marginal
prices; see [23]. While this models incentives in markets where indeed a system of locational marginal prices is
implemented (as, e.g., in the US or Canada), it limits insights with respect to other markets, which might rely
on a system of market splitting or coupling and redispatch, which is not captured by the approaches mentioned
above. It is the purpose of this article to explicitly analyze the impact of specific design features of transmission
management regimes as market splitting and redispatch on the generation and transmission investment incentives.

Let us finally note that, in recent years, an extensive literature has been developed, which analyzes the
impact of specific rules of the transmission management regime on short-run market outcomes, i.e., for fixed
generation and transmission facilities. Prominent articles include [24], [25], [26], or [27] who compare the
short-run implications of zonal systems with redispatch to the system of nodal pricing. Several articles analyze
the incentives of different agents that are able to exercise market power under different transmission management
regimes; see, e.g., [28], [29], [30], [31], [32], or [33]. Recently, [34], [35], [36], and [37] compared different
transmission management regimes based on market coupling or splitting with redispatch. All those articles
consider only the short-run perspective, while it is our purpose to consider the long-run effects on investment
incentives.

1.2. Outline of the Paper

This paper is organized as follows. Sect. 2 presents the basic economical and technical quantities that are
used throughout the paper. In Sect. 3 we introduce the integrated planner approach, while Sect. 4 presents the
trilevel model with a cost-based redispatch system and market splitting. The trilevel model is reformulated using
novel ideas in Sect. 5 and tailored solution strategies for the reformulated model are given in Sect. 6. The last
part of our paper, Sect. 7, presents computational results for test networks that illustrate the applicability of our
model. Finally, Sect. 8 concludes.

2. Basic Economical and Technical Setup

In this section we present the basic notation that is used throughout the paper. For the sake of completeness,
we present all quantities used in our models in Appendix AppendixA.

2.1. Network Model

We consider an electricity transmission network G = (N, Lex) with a set of nodes N = {n1, . . . , n|N |} and a set
of existing transmission lines Lex. By L we denote different line types that are characterized by their capacity f̄
and their susceptance B. Given different line types ` ∈ L, the network operator decides on an optimal network
expansion plan, i.e., on the construction of candidate power lines l ∈ Lnew =

⋃
`∈L Lnew

`
, and on the degradation

of existing lines l ∈ Lex =
⋃
`∈L Lex

` . The set of all lines, i.e., existing and candidate transmission lines, is denoted
by L := Lex ∪ Lnew. Throughout the paper we make use of the standard δ-notation, i.e., the set of in- and outgoing
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edges of a node set Ñ is given by δin
Ñ

(L̃) or δout
Ñ

(L̃), respectively, where the line set L̃ is used to denote the set of
considered arcs. More formally, we have

δin
Ñ (L̃) := {l ∈ L̃ : l = (n, m) with m ∈ Ñ}, δout

Ñ (L̃) := {l ∈ L̃ : l = (n, m) with n ∈ Ñ}.

Our trilevel power market model allows us to account for multiple price zones Z that are given as parts of a
partition N = Z1 ∪ · · · ∪ Z|Z| of the node set. In our context, the parts of this partition refer to different price zones
in the electricity market. By Linter

` ⊆ Lex
` ∪ Lnew

`
we denote inter-zone lines of type ` connecting nodes that belong

to different zones. As before, Linter =
⋃
`∈L Linter

` denotes the set of inter-zone lines of all types.
Line investment cost are denoted by cinv

l and line degradation cost by cdel
l . When making line investment

decisions, the TO faces physical network constraints known as Kirchhoff’s first and second law. Throughout the
paper we use a linear approximation of real power flows known as the lossless direct current (DC) power flow
approximation; see, e.g., [38].

2.2. Electricity Demand and Time Horizon

The set of demand nodes is denoted by Ndem ⊆ N. Consumers are located exclusively at these nodes, i.e.,
demand is zero at any other node n ∈ N \ Ndem. We further assume a given equidistantly discretized time horizon
T = {t1, . . . , t|T |} with time steps τ = tk+1 − tk for all k = 1, . . . , |T | − 1. Elastic demand at demand node n ∈ Ndem

in time period t ∈ T is modeled by a continuous, strictly decreasing function

pt,n(dt,n) : [0, d̄t,n]→ R+.

Here and in what follows, dt,n denotes demand and pt,n(dt,n) is the resulting market price. The saturation point d̄t,n
is the unique positive root of pt,n. Note that the gross consumer surplus, which is the integral of pt,n over [0, d̄t,n],
is a concave function in our case.

2.3. Investment, Production, and Supply

For a given network node n ∈ N, Gall
n denotes a finite set of existing technologies and candidate technologies

that firms can invest in. We use the set Gex
n for already existing generation technologies and the set Gnew

n for
candidate generation technologies. Thus, Gall

n = Gnew
n ∪Gex

n holds. To account for the characteristics of different
production technologies, we allow for so-called equivalent availabilities αg ∈ [0, 1] for every g ∈ Gall

n and n ∈ N.
Investment cost of building new generation capacity is denoted by cinv

g ∈ R+.
We assume that all firms act in a competitive environment without any type of market power and act as

price takers; see also Sect. 4.2. Variable production cost is denoted by cvar
g ∈ R+ for all g ∈ Gall

n and n ∈ N. In
addition, we assume that all variable cost cvar

g are pairwise distinct since this is needed to ensure unique spot
market solutions; see Sect. 5.

2.4. Network Fees

In our power market model the TO has to collect network fees in order to cover expenses arising from line
investment and redispatch. We denote the revenues from these network fees by R and consider three different
types of network fee regimes:

• We denote by ϕls the lump sum fee that is paid by the consumers. The corresponding revenues are given
by Rls = ϕls.

• We denote by ϕeb the energy based fee, i.e., a per unit fee charged for each unit of electricity traded on the
spot market. Let dspot

t,n describe spot market demand at node n in time period t. Then, the corresponding
revenue is given by

Reb = ϕeb
∑

n∈Ndem

∑
t∈T

dspot
t,n .
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• We denote by ϕgcb the generation capacity based fee, i.e., a per unit fee charged for each unit of generation
capacity connected to the network. If ȳex

g denotes the capacity of an existing generator and ȳnew
g the capacity

of a newly installed generator, the corresponding revenues are

Rgcb = ϕgcb
∑
n∈N

 ∑
g∈Gnew

n

ȳnew
g +

∑
g∈Gex

n

ȳex
g

 .

3. The Integrated Planner Approach as a First Best Benchmark

As a first best benchmark we consider the integrated planner approach where an integrated generation and
transmission company (IGTC) simultaneously decides on transmission and generation capacity expansion and
chooses welfare maximizing production at the spot markets. There are several formulations in the literature that
analyze integrated planner solutions, which might serve as a benchmark in our setting. The formulation chosen
here is closely related to the clear-cut formulation of the integrated planner model in [21]. The IGTC maximizes
total social welfare which is defined as the difference of gross consumer surplus (aggregated over all demand
scenarios) and line investment cost, line degradation cost as well as generation capacity investment cost and
variable cost of production. Thus, the objective function of the IGTC reads

ψIGTC :=
∑

n∈Ndem

∑
t∈T

∫ dt,n

0
pt,n(ξ) dξ −

∑
l∈Lnew

cinv
l zl −

∑
l∈Lex

cdel
l zl

−
∑
n∈N

 ∑
g∈Gnew

n

cinv
g ȳnew

g +
∑

g∈Gall
n

∑
t∈T

cvar
g yt,g

 ,

where zl are binary decision variables that decide whether a new line is build or an existing line is degraded.
Moreover, yt,g is the actual production of generation technology g at node n. It can be shown that this approach
yields the same investment and production outcomes as an idealized nodal pricing system.2 In what follows, we
introduce the constraints that the IGTC is facing. Kirchhoff’s first law ensures power balance at any node n ∈ N
in the electricity network. Thus, for every time period t ∈ T the total power flow out of node n ∈ N and into that
node have to be balanced with respect to total production and demand and that node:

dt,n =
∑

g∈Gall
n

yt,g +
∑

l∈δin
n (L)

ft,l −
∑

l∈δout
n (L)

ft,l for all n ∈ N, t ∈ T . (1)

Note that summing up (1) for all network nodes yields the market clearing condition∑
n∈Ndem

dt,n =
∑
n∈N

∑
g∈Gall

n

yt,g for all t ∈ T . (2)

Kirchhoff’s second law determines the voltage angles in the network:

−Mlzl ≤ ft,l − Bl(θt,n − θt,m) ≤ Mlzl for all l = (n, m) ∈ Lex, t ∈ T , (3a)
−Ml(1 − zl) ≤ ft,l − Bl(θt,n − θt,m) ≤ Ml(1 − zl) for all l = (n, m) ∈ Lnew, t ∈ T . (3b)

2It is well known that the integrated planner approach yields the same outcome as a nodal price system in the short-run; see, e.g., [23].
Analogously, our results in Sect. 5 imply that the solution of the long-run integrated planner approach is equivalent to the outcome of a
trilevel nodal pricing model which also accounts for investments in transmission and generation capacity. In such a trilevel nodal pricing
model, a regulated TO decides on transmission expansion at the first stage. At the second stage, competitive firms decide on generation
expansion investment and spot market bids. At the third stage, the TO decides on the welfare maximizing feasible allocation and implements
nodal prices.
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Here and in what follows, M denotes a sufficiently large constant. In order to obtain physically unique solutions,
we have to fix the voltage angle at an arbitrary reference node n1 ∈ N in every time period:

θt,n1 = 0 for all t ∈ T . (4)

Furthermore, transmission flows are limited by lower and upper bounds. Here, line investment is explicitly taken
into account:

−(1 − zl) f̄l ≤ ft,l ≤ (1 − zl) f̄l for all l ∈ Lex, t ∈ T , (5a)
−zl f̄l ≤ ft,l ≤ zl f̄l for all l ∈ Lnew, t ∈ T . (5b)

The next group of constraints ensures that electricity production does not exceed installed generation capacity
with respect to the equivalent availabilities of the considered technologies:

yt,g ≤ αgτȳex
g for all n ∈ N, g ∈ Gex

n , t ∈ T , (6a)

yt,g ≤ αgτȳnew
g for all n ∈ N, g ∈ Gnew

n , t ∈ T . (6b)

Finally, we have to impose simple bounds on the variables of the ITGC model:

ȳnew
g ≥ 0 for all n ∈ N, g ∈ Gnew

n , (7a)

yt,g ≥ 0 for all n ∈ N, g ∈ Gall
n , t ∈ T , (7b)

dt,n ≥ 0 for all n ∈ Ndem, t ∈ T , (7c)
zl ∈ {0, 1} for all l ∈ Lex ∪ Lnew. (7d)

In summary, the IGTC faces the following inter-temporal mixed-integer maximization problem with linear
constraints and a concave objective:

max ψIGTC (8a)
s.t. Kirchhoff’s first and second law: (1), (3), (8b)

voltage phase angle at reference node: (4), (8c)
transmission flow limits: (5), (8d)
generation capacity limits: (6), (8e)
variable restrictions: (7). (8f)

We finally note that it might be also possible to incorporate additional security of supply constraints, both
for line and generation investment. However, we neglect this aspect here and in what follows for the ease of
presentation.

4. The Trilevel Power Market Model

In most European countries spot market trading does not fully account for network constraints (if at all).
Therefore, congestion management mechanisms and the way network fees are collected play a crucial role for
investment incentives—both in network and generation capacity expansion. It is most likely that energy-only
markets with redispatch do not result in optimal incentive structures. Thus, one is faced with two main questions:
How large is the difference to the first best solution and do there exist alternative mechanisms that have the
capability to improve the situation substantially?

In our power market model we consider an energy-only market with cost-based redispatch. Electricity
trading and redispatch is organized as follows in such a system: Firms trade electricity day ahead (and possibly
intra-day) at a power exchange that does not account for any transmission constraints—or at least not for all
of them as in the case of market splitting. After closing the market, the TO checks feasibility of the resulting
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Figure 1: Economic equilibrium of cost-based redispatch

transmission flows. If the allocation is feasible, nothing is changed and electricity is generated and consumed as
traded. If transmission is infeasible, the TO redispatches plants and consumers in the cheapest possible way that
ensures feasibility of transmission flows. To that aim the TO obliges some producers to (partially) shut down
production, while others are called to step in instead, or asks consumers to modify their demand. Plants that are
shut down have to pay their variable cost, which they save due to the shutdown, to the TO. Plants that are called
to step in receive their variable production cost. Production cost of the called plants are necessarily higher than
production cost of the plants that are shut down, since otherwise they would have been successful on the spot
market. The resulting cost is collected by the TO through network fees. While in the early days of liberalized
electricity markets redispatch was a rare event, nowadays the phenomenon becomes more and more important.
See, e.g., [39] for the case of Germany, where the decision to shut down nuclear power plants and to increase
the generation capacity of renewables implies a much more uncertain and regionally dispersed supply structure.
Figure 1 illustrates the cost-based redispatch mechanism on a stylized two-node example. Here, linear demand is
located at one node and production is hosted at the other node. We further assume that there is only one generator
with constant variable production cost. As illustrated in Fig. 1, in the case of unlimited transmission capacities
the equilibrium quantity B will be produced. However, given physical transmission constraints with D describing
the maximum amount of electricity that can be transmitted between the two nodes, the TO obliges consumers to
step back from their contracts. As a compensation, the TO pays these consumers the amount equal to the area of
the polygon ABDF. Additionally, the TO asks firms (typically those with the highest variable cost) to shut down
their production. The respective firms pay an amount equal to the area of the rectangle ABDE to the TO, which
corresponds exactly to the variable cost that do not arise due to redispatch. Obviously, the redispatch mechanism
has no impact on the firms’ profits when they are asked to decrease their production. In contrast, the TO faces
additional cost equal to the area of the triangle AEF. These additional cost must be collected from the market
participants through network fees.

Let us now briefly sketch the structure of our model before we introduce the details at all levels. We consider
a trilevel problem where the TO decides about investment in network expansion anticipating an energy-only
market with cost-based redispatch. The timing of this game is illustrated in Fig. 2. Note that investment choices
are taken once (sequentially by the TO and competitive firms), followed by multiple periods of spot market
trading and redispatch (in the case of congestion). We translate this game into a trilevel model as follows: At the
first level, the TO decides to invest in line expansion or degradation, anticipating the outcomes at all subsequent
levels. The objective of the TO is to maximize welfare. At the second level, we model investment decisions
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generation capacity
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|T | periods of spot market
trading (firms) and redispatch
after each spot market (TO)

Figure 2: Timing of the multistage game

of private firms in generation capacity as well as trading at a sequence of |T | spot markets with fluctuating
demand. In contrast to the TO who is driven by welfare concerns, firms take investment and supply decisions
as to maximize profits. We assume that spot market rules yield no price signals within price zones and assume
competitive spot markets (see Sect. 4.2 for a detailed discussion of the latter assumption). The redispatch of the
|T | spot markets is modeled in the third level and anticipated by firms when they decide on investment and supply
at level two. Redispatch occurs whenever traded quantities turn out to be infeasible subject to transmission
constraints. Note that consideration of redispatch in a separate third stage is possible since, once network and
generation capacities have been chosen, redispatch in time period t cannot have any impact on supply decisions
at any later point in time.

We point out that all levels of our power market model are interconnected: the investment of firms and
optimal spot market behaviour as well as the redispatch market are part of the TO’s constraints at the first level.

Let us finally emphasize that our power market model allows to account for multiple price zones Z, which
enables us to investigate the effect of market splitting under cost-based redispatch. Under market splitting, spot
market trading takes network constraints between, but not within, zones into account.

In order to formally state the models, we have to introduce some more notation. In what follows, a superindex
“spot” indicates quantities after spot market trading and a superindex “redi” denotes quantities after redispatch.
Lastly, ∆’s denote redispatch quantities, i.e., the difference of the quantity after redispatch and after spot market
trading. For instance, dredi

t,n = dspot
t,n + ∆dt,n specifies the relationship between demand after spot market trading

and the actual demand after redispatch.

4.1. First-Level Problem: Optimal Line Expansion

At the first level, the TO decides on a line expansion plan as to maximize welfare, which is given as the
difference of gross consumer surplus from all markets and investment and generation costs:

ψ1 :=
∑

n∈Ndem

∑
t∈T

∫ dredi
t,n

0
pt,n(ξ) dξ −

∑
l∈Lnew

cinv
l zl −

∑
l∈Lex

cdel
l zl

−
∑
n∈N

 ∑
g∈Gnew

n

cinv
g ȳnew

g +
∑

g∈Gall
n

∑
t∈T

cvar
g yredi

t,g

 .

(9)

The TO is restricted by the budget constraint E = R, requiring that expenses

E =
∑

n∈Ndem

∑
t∈T

∫ dspot
t,n

dredi
t,n

pt,n(ξ) dξ +
∑
n∈N

∑
g∈Gall

n

∑
t∈T

cvar
g ∆yt,g +

∑
l∈Lnew

cinv
l zl +

∑
l∈Lex

cdel
l zl (10)

for network expansion and degradation (third and fourth term) and redispatch (first and second term) are covered
by revenues R from network fees ϕ. Thus, revenues R are a function of the collected fee ϕ, which makes the
latter a first-level variable. Note that redispatch cost is composed of remuneration of consumers that cannot be
supplied (first term) as well as transfers to (or from) plants that are redispatched (second term). As the TO can
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decide to reduce spot market production or demand, ∆yt,g and ∆dt,n may also become negative. All together, we
obtain the following first-level problem:

max ψ1 s.t. E = R, zl ∈ {0, 1} for all l ∈ Lex ∪ Lnew.

4.2. Second-Level Problem: Generation Investment and Spot Market Behavior

At the second level we model the behavior of firms with respect to generation investment and spot market
trading. The wholesale electricity market is assumed to be perfectly competitive, i.e., no firm can directly
affect prices by strategic investment or supply decisions. It has been shown in the literature that in the absence
of transmission constraints a perfectly competitive environment yields welfare maximizing investment and
production decisions in our context; see, e.g., [13]. We are aware of the issue that the assumption of perfect
competition may not be adequate for power systems in general. However, this assumption is necessary in order
to keep the multilevel problem tractable, both theoretically and computationally: For the case of strategic firms
investing in several technologies, it has been shown that uniqueness of equilibria does not hold for a reasonable
set of assumptions; see [12]. As a consequence, this is assumption has been established as a standard in the
literature; see, e.g., [40] or [41].

When making investment and supply decisions, firms only consider physical constraints for which they
receive price signals. If the market is not divided into zones, firms receive no signals concerning network
capacities and thus, will not account for them. If the market is divided into two or more zones, firms consider
those physical constraints which are expressed in price differences due to market splitting: Between any pair of
zones, electricity flow cannot exceed the maximum capacity of the respective inter-zone network links—and
congestion implies price differences across zones. This is modeled by the following zonal version of Kirchhoff’s
first law ∑

n∈Ndem∩Zk

dspot
t,n =

∑
n∈N∩Zk

∑
g∈Gall

n

yspot
t,g +

∑
l∈δin

Zk
(L)

f spot
t,l −

∑
l∈δout

Zk
(L)

f spot
t,l (11)

for all t ∈ T , Zk ∈ Z, and market splitting flow restrictions

−(1 − zl) f̄l ≤ f spot
t,l ≤ (1 − zl) f̄l for all l ∈ Linter ∩ Lex, t ∈ T , (12a)

−zl f̄l ≤ f spot
t,l ≤ zl f̄l for all l ∈ Linter ∩ Lnew, t ∈ T . (12b)

Other physical restrictions like Kirchhoff’s second law are not considered.3 In addition, we have variable
restrictions in analogy to (7), i.e.,

ȳnew
g ≥ 0 for all n ∈ N, g ∈ Gnew

n , (13a)

yspot
t,g ≥ 0 for all n ∈ N, g ∈ Gall

n , t ∈ T , (13b)

dspot
t,n ≥ 0 for all n ∈ Ndem, t ∈ T . (13c)

To summarize, at level two we consider welfare maximizing generation investment and supply decisions, i.e.,

ψ2 :=
∑

n∈Ndem

∑
t∈T

∫ dspot
t,n

0
pt,n(ξ) dξ −

∑
n∈N

 ∑
g∈Gnew

n

cinv
g ȳnew

g +
∑

g∈Gall
n

∑
t∈T

cvar
g yspot

t,g

 − R, (14)

where supply is constrained by generation capacities installed, and transmission constraints across zones. Note
that in (14), R again denotes revenues of the TO, which affect demand and generation decisions on the spot

3Note that analogous to flow-based market coupling, we could also consider Kirchhoff’s second law on the reduced network among zones.
Our framework would be perfectly suited for such an analysis. However, due to the overall length of this article we refrain from this aspect.
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Table 1: Variables of the trilevel model

first-level variables: zl,ϕ
second-level variables: dspot

t,n , yspot
t,g , f spot

t,l , ȳnew
g

third-level variables: dredi
t,n , yredi

t,g , f redi
t,l , θredi

t,l , ∆yt,g, ∆dt,n, ∆ ft,l
multilevel variables: E, R

market. Thus, the second-level problem reads

max ψ2

s.t. generation capacity limits: (6),
zonal version of Kirchhoff’s first law: (11),
market splitting flow restrictions: (12),
variable restrictions: (13),

where we replaced yt,g by yspot
t,g in (6).

We finally point to the following observations regarding the zonal version of Kirchhoff’s first law: Summing
up (11) for all zones we obtain the market clearing condition (2). In a model with redispatch and only one
zone, (11) coincides with a standard market clearing condition. In the case where every zone consists of exactly
one network node, (11) coincides with Kirchhoff’s first law ensuring power balance at every network node.
Intermediate cases require the market to clear within each zone, accounting for possible transmission constraints
across zones through differences in the respective market clearing prices.

4.3. Third-Level Problem: Optimal Redispatch
At the third level, the TO simultaneously decides on redispatch for all |T | spot markets. Reallocation of spot

market outcomes is realized in a way that ensures feasibility with respect to transmission constraints at lowest
costs. These costs are given by

ψ3 :=
∑

n∈Ndem

∑
t∈T

∫ dspot
t,n

dredi
t,n

pt,n(ξ) dξ +
∑
n∈N

∑
g∈Gall

n

∑
t∈T

cvar
g ∆yt,g

and the redispatch decision has to account for all physical transmission constraints and generation capacity limits:

min ψ3

s.t. (1), (3)–(6),

dredi
t,n = dspot

t,n + ∆dt,n for all n ∈ Ndem, t ∈ T ,

yredi
t,g = yspot

t,g + ∆yt,g for all n ∈ N, g ∈ Gall
n , t ∈ T ,

f redi
t,l = f spot

t,l + ∆ ft,l for all l ∈ Linter, t ∈ T ,

dredi
t,n ≥ 0 for all n ∈ Ndem, t ∈ T ,

yredi
t,g ≥ 0 for all n ∈ N, g ∈ Gall

n , t ∈ T .

Here, we replaced ft,l by f redi
t,l , dt,n by dredi

t,n , and θt,n by θredi
t,n in the Kirchhoff constraints (1) and (3), in the voltage

angle reference constraint (4), in the transmission flow limit constraints (5), and yt,g by yredi
t,g in the generation

capacity limit constraints (6). Table 1 gives an overview of the variables of all three stages.
Finally, observe that the trilevel problem yields a different solution than the integrated planner problem. This

is mainly driven by the fact that firms at the second level choose generation capacities, which are not optimal
from an overall welfare maximizing perspective, since their choice ignores network congestion. Welfare obtained
for the solution of the integrated planner problem is thus larger than welfare obtained for the solution of the
trilevel market problem.
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Table 2: Reformulated trilevel problem: sub- and master problem

Subproblem Master problem
(generation investment & spot market) (line expansion & redispatch)

max firms’ profits/social welfare max social welfare
s.t. a) generation investment s.t. a) line investment

b) production constraints b) production constraints
c) Kirchhoff’s 1st law (inter-zonal) c) power flow constraints
d) flow restrictions (inter-zonal) d) revenue/network fee
e) revenue/network fee

5. Reformulation of the Trilevel Model

The trilevel problem developed in the last section is a special instance of general multilevel optimization
problems, which is a very hard class of optimization problems; cf. [42], who showed that even solving linear
bilevel problems is NP-hard. Most algorithmic approaches for bilevel problems make use of first-order optimality
conditions and solve the resulting mathematical program with equilibrium constraints (MPEC); see [43], [21],
or [20] for applied studies. However, such problem reformulations explicitly rely on nonconvex optimization
problems and additionally have the drawback that standard constraint qualifications like the Mangasarian–
Fromovitz constraint qualification are violated at every feasible point. Therefore, problem-tailored constraint
qualifications and stationarity concepts have been developed for MPECs; see, e.g., [44]. For more information on
the topic of multilevel programming and MPECs we refer to [45], [46], and [47].

In this section we present a new reformulation approach that allows us to find global optimal solutions in
our specific case without using first-order optimality conditions. Before we present our formal reformulation
approach, we point out that the trilevel problem always has a finite global optimal solution, since the feasible
region is bounded.

The main reason that makes a reduction of stages of the trilevel model possible is that the objective functions
all point “into the same direction”. This aspect and the way how we exploit it is discussed in detail in the
following. Our reformulation approach builds on a detailed two-step analysis of the connection between the
three problem levels. In a first step, we fix all non-second-level variables in the second-level problem. This
allows us to iteratively solve independent single-level subproblems, i.e., second-level problems with respect to
line investment, and corresponding bilevel master problems consisting of the original first-level and third-level
models. In a second step, we show that instead of solving a bilevel master problem, we can solve a single-level
master problem. Combining the results of both steps, we iteratively solve single-level sub- and master problems
arriving at a global optimal solution to the original trilevel problem. Table 2 depicts the reformulation of the
trilevel problem into single-level sub- and master problems.

5.1. From the Trilevel Problem to a Single-Level Sub- and Bilevel Master Problem

First note that the second-level problem (generation investment and spot market behaviour) includes only
first- and second-level variables. The reason is that for cost-based redispatch firms never receive additional rents
from the third stage. Consequently, although the second-level problem is connected to the third level (redispatch)
via the line investment problem at the first level, there is no direct interconnection. To be more precise, the
interconnection of the stages is purely driven by inter-zonal line investment variables and the transmission
fee variable from the first-level problem. Thus, we can fix these variables and solve the second-level market
subproblem for every possible realization of these variables. We then fix the respective second-level variables in
the first-level and the third-level problem to the values of this solution. This reduces the problem to a bilevel
master problem with a reduced number of variables. Note that the approach to substitute the optimal second-level
values requires uniqueness of the second-level solution. This will be shown in the upcoming publication [48]
under the assumptions of pairwise distinct variable cost and firms that interact on a fixed network structure.
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5.2. From a Bilevel to a Single-Level Master Problem

We now show how the bilevel master problem consisting of line investment and redispatch can be solved
efficiently. The key ingredient is given in the following proposition, which states that the third-level objective ψ3
is an affine transformation of the objective ψ1 of the first level.

Proposition 1. Let ψ1 and ψ3 be the objective functions of the original first and third level. Then, ψ3 = −ψ1 + b
holds, where

b =
∑

n∈Ndem

∑
t∈T

∫ dspot
t,n

0
pt,n(ξ) dξ −

∑
l∈Lnew

cinv
l zl −

∑
l∈Lex

cdel
l zl

−
∑
n∈N

∑
g∈Gnew

n

cinv
g ȳnew

g −
∑
n∈N

∑
g∈Gall

n

∑
t∈T

cvar
g yspot

t,g

only depends on spot market and line investment variables.

This insight reveals that the first- and third-level problem have affine-equivalent objective functions and, thus,
identical optimization directions. We now exploit the fact that in order to solve a general bilevel problem with
affine-equivalent objective functions, it is possible to solve an easier single-level problem, which is equivalent.

Proposition 2. Consider the bilevel problem

min
x1,x2

ψ(x1, x2) s.t. g(x1, x2) ≥ 0, x2 = arg min
z
{ψ(x1, z) : h(x1, z) ≥ 0}

with equivalent objective functions in the upper and lower level and denote the set of optimal solutions by Sbl.
Moreover, let

min
x1,x2

ψ(x1, x2) s.t. g(x1, x2) ≥ 0, h(x1, x2) ≥ 0

be the corresponding single-level problem with solution set Ssl. Then, Ssl = Sbl holds.

Proof. Since a solution of the bilevel problem is feasible for the single-level problem and vice versa, the same
objective function in the upper and lower level directly implies the result.

Note that the above result can easily be generalized to p-level programming problems for p > 2. For the sake
of completeness let us also state the following proposition, which is an immediate consequence.

Proposition 3. Assume a p-level minimization problem is given with ψi denoting the objective function of the
i-th problem stage. If there exist affine linear transformations aiψi + bi = ψ1 and ai > 0 for all i ∈ {2, . . . , p}, then
the multilevel model can be solved as a single-level model.

6. Solution Strategy

In this section we describe how we solve the reformulated problem to global optimality. Since we started
from a mixed-integer nonlinear trilevel problem it is clear that this is computationally a very hard task. However,
the reformulation discussed in Sect. 5, together with the results given in this section, allow us to set up a binary
search strategy to solve the coupled master and subproblems; see Sect. 6.1. In Sect. 6.2, we describe how binary
search upper bounds for the network fee are determined and, finally, in Sect. 6.3, we describe a technique for
reducing the complexity of the proposed algorithm.
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Algorithm 1: Binary search for the reformulated trilevel model
Input :Parameters for the trilevel power market model, upper bound ϕ̄ of the network fee
Output :Optimal solution x∗ and optimal objective value ψ∗ of the trilevel problem

1 Set ψ∗ = 0 and x∗ = 0.
2 for all network configurations ∅ ⊆ X ⊆ Lex ∪ Lnew do
3 Set a← 0 and b← ϕ̄.
4 while a ≤ b do
5 Set ϕ← (a + b)/2 and solve the subproblem for fixed network configuration X and fixed network

fee ϕ. Let y∗
X,ϕ be the solution.

6 Solve the master problem for fixed network configuration X, fixed network fee ϕ, and fixed values
y∗
X,ϕ of the subproblem. Let x∗

X,ϕ be the solution.
7 if |B(x∗

X,ϕ)| = 0 then go to line 9
8 if B(x∗

X,ϕ) < 0 then set a← m else set b← m.

9 if ψ(x∗
X,ϕ) > ψ∗ then set x∗ ← x∗

X,ϕ and ψ∗ ← ψ(x∗).

10 return x∗ and ψ∗.

6.1. Binary Search Algorithm

We now describe how the trilevel problem can be solved in an efficient way using a problem-tailored
binary search strategy. This approach is based on the trilevel program reformulated as a single-level sub- and
master problem as described in Sect. 5. The key insight is that the master and subproblem are only coupled by
transmission line investment and network fees. Thus, fixing these values yields decoupled models that can be
solved separately. For this purpose, we iterate over all possible network configurations X with ∅ ⊆ X ⊆ Lex∪Lnew

and we additionally neglect the budget constraint B = R − E = 0, for which we compute the unique feasible
solution via binary search. The resulting algorithm is depicted in Alg. 1.

In order to proof correctness of the algorithm, we have to show that the budget function B = B(ϕ) for fixed
line investment is strictly increasing in the network fee ϕ and that sign(B(0)) , sign(B(ϕ̄)). Note that correctness
of the binary search algorithm only requires monotony of the budget function but strict monotonicity is required
in order to obtain global optimal solutions. Here and in what follows, ϕ̄ denotes the upper bound on the network
fee that is used in the binary search. Our discussion in Sect. 4 shows that cost from redispatch are always
nonnegative. Moreover, they can only be zero in the case of no line investment. Since R(0) = 0 for every fee
type, this shows B(0) ≤ 0. Thus, it is sufficient to prove strict monotonicity of B since then B(ϕ̄) > 0 follows for
sufficiently large ϕ̄. Obviously, there is nothing to show for the case of a lump sum fee. In the next section, we
prove a criterion for strict monotonicity for the generation capacity based fee ϕ = ϕgcb and focus on the case of
the energy-based fee ϕ = ϕeb in Sect. 6.1.2.

6.1.1. Monotonicity of the TO’s Budget Function for the Generation Capacity Based Fee
In the following, quantities without subindex for network elements or time periods denote the corresponding

vector, e.g., ȳnew = (ȳnew
n )n∈N is the vector of all newly installed generation capacities. Using this notation, the

budget function B : R→ R is defined as

B(ϕ) := R(ϕ, ȳnew(ϕ)) − E(ȳnew(ϕ)).
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For the ease of exposition, we consider the slightly simplified spot market model without market splitting

max
d,y,ȳnew

ψspot :=
∑

n∈Ndem

∑
t∈T

∫ dt,n

0
pt,n(ξ) dξ −

∑
n∈N

cinv
n ȳnew

n + ϕȳnew
n +

∑
t∈T

cvar
n yt,n

 (15a)

s.t. 0 ≤ yt,n ≤ ȳnew
n for all n ∈ N, t ∈ T , (15b)∑

n∈Ndem

dt,n −
∑
n∈N

yt,n = 0 for all t ∈ T , (15c)

in which we (w.l.o.g.) assume that it can only be invested in one technology per node, that all equivalent
availabilities are 1 and that the time steps τ are 1 h. The corresponding redispatch model is given by

max
d,y

ψredi :=
∑
t∈T

 ∑
n∈Ndem

∫ dt,n

0
pt,n(ξ) dξ −

∑
n∈N

cvar
n yt,n

 (16a)

s.t. 0 ≤ yt,n ≤ ȳnew
n for all n ∈ N, t ∈ T , (16b)∑

n∈Ndem

dt,n −
∑
n∈N

yt,n = 0 for all t ∈ T , (16c)

− f̄ ≤ A(d − y) ≤ f̄ , (16d)

where A is the well-known PDTF matrix that relates demand and production at nodes of an electricity network to
power flows on lines. Note that we have to extend the demand vector d by additional 0’s for all nodes n ∈ N \Ndem.
With these two models and the definition (10) of the TO’s expenses, the budget function can be rewritten as

B(ϕ) = ψ∗redi(ȳ
new(ϕ)) − ψ∗spot(ϕ) −

∑
n∈N

cinv
n ȳnew

n (ϕ),

where only those dependencies on parameters are given that do not vanish in the first derivative w.r.t. ϕ. Strict
monotonicity in ϕ then is equivalent to

0 <
dB
dϕ

= (∇ȳnewψ∗redi)
T∇ϕȳnew −

∑
n∈N

cinv
n
∂ȳnew

n

∂ϕ
+
∑
n∈N

ȳnew
n . (17)

Thus, we have to compute the change in generation investment with respect to the network fee ∇ϕȳnew and the
change in the optimal redispatch value with respect to the upper bounds on generation ∇ȳnewψ∗redi. We start with
the former and make use of the first-order optimality conditions of the spot market model (15), which are also
sufficient in our case. These conditions comprise dual feasibility

pt,n(dt,n) + λt = 0 for all n ∈ Ndem, t ∈ T , (18a)
−cvar

n + αt,n − βt,n − λt = 0 for all n ∈ N, t ∈ T , (18b)

−cinv
n − ϕ +

∑
t∈T

βt,n = 0 for all n ∈ N, (18c)

primal feasibility (15b) and (15c) as well as complementarity and nonnegativity of dual variables of inequality
constraints (15b). That is, the lower bounds 0 ≤ yt,n are equipped with dual variables αt,n, upper bounds yt,n ≤ ȳn

with βt,n and the market clearing condition (15c) with λt. Note that a price equilibrium directly follows from
(18a), i.e.,

pt,ni (dt,ni ) = pt,n j (dt,n j ) for all ni, n j ∈ Ndem (19)

holds for all t ∈ T . Thus, it is reasonable to introduce the notation pt (independent of a demand node n) for the
spot market price in time period t. Combining (18a) and (18b) then yields

βt,n = pt − cvar
n + αt,n for all n ∈ N, t ∈ T , (20)
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where we can replace pt by pt,n = pt,n(dt,n) for any demand node n ∈ Ndem. From now on, we assume that all
variable costs cvar

n , n ∈ N = {n1, . . . , n|N |}, are positive and pairwise distinct and that the nodes are ordered such
that

0 < cvar
n1
< cvar

n2
< · · · < cvar

n|N |

holds. This ordering allows us to formulate the following lemma, which follows directly from the optimality of
spot market solutions:

Lemma 1. For every time step t ∈ T there exists a node index i such that

ȳnew
n j

= yt,n j for all j < i, 0 = yt,n j for all j > i, 0 ≤ yt,ni < ȳnew
ni

,

holds for every optimal solution d, y and ȳnew of the spot market model.

In what follows, we use the index sets Tn := {t ∈ T : yt,n = ȳnew
n }. In order to compute ∇ϕȳnew we now

consider the KKT condition (18c). By subtracting the equation for node ni+1 from the one for ni and using (20),
we obtain

γi+1,i +
∑

t∈Tni \Tni+1

pt = 0, γi+1,i = cinv
ni+1
− cinv

ni
+ |Tni+1 |c

var
ni+1
− |Tni |c

var
ni

.

Here, we used the price equilibrium (19), condition (20), Lemma 1, and the relation Tni+1 ⊆ Tni . We now apply
Gaussian elimination steps in which we replace the equation of node ni by the difference of equation for node ni

and of node ni+1 for i = 1, . . . , |N| − 1. The equation of the last node stays untouched. This gives

γi+1,i +
∑

t∈Tni \Tni+1

pt = 0, for all i = 1, . . . , |N | − 1, (21a)

−cinv
n|N| − ϕ +

∑
t∈Tn|N |

(pt − cvar
n|N| ) = 0. (21b)

With the additional assumption (which is in line with our case studies) that the price functions are linear,
i.e. pt,n(dt,n) = at,n − sndt,n, where at,n > 0 is the intercept with the price axis and −sn < 0 is the slope.
Note that fluctuation is only modeled by shifted intercepts whereas the slope of the price functions stays the
same. Furthermore, we need the well-known notion of so-called inverse market demand functions Pt(Dt), which
represent the price functions for the aggregated market demand at time step t. They are given as Pt(Dt) = At +S Dt,
with

Dt =
∑

n∈Ndem

dt,n, At =

∑
n∈Ndem at,n/sn∑

n∈Ndem 1/sn
, S = −

1∑
n∈Ndem 1/sn

. (22)

The inverse demand functions can be derived as follows: First solve the single demand functions for dt,n, yielding
dt,n = (at,n − pt,n)/sn. Since all prices are equal for all nodes, we have

Dt =
∑

n∈Ndem

dt,n =
∑

n∈Ndem

(at,n − pt,n)/sn =
∑

n∈Ndem

at,n/sn − Pt

∑
n∈Ndem

1/sn,

which gives (22). This notation now allows to rewrite (21) as

γi+1,i +
∑

t∈Tni \Tni+1

Pt

 i∑
k=1

ȳnew
nk

 = 0, for all i = 1, . . . , |N | − 1, (23a)

−cinv
n|N| − ϕ +

∑
t∈Tn|N |

Pt

∑
n∈N

ȳnew
n

 − cvar
n|N|

 = 0. (23b)

Since the equations (23a) uniquely define ȳnew
ni

for i = 1, . . . , |N | − 1 and do not depend on the fee ϕ, we have

∂ȳnew
ni

∂ϕ
= 0 for all i = 1, . . . , |N | − 1. (24)

In addition, the remaining partial derivative is given by the following lemma.
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Lemma 2. It holds
∂ȳnew

n|N |

∂ϕ
= (|Tn|N| |S )−1 =: Φ < 0.

Proof. Equation (23b) is an equation of the form F(ȳnew
n1

(ϕ), . . . , ȳnew
n|N | (ϕ);ϕ) = 0. Thus, (24) and the implicit

function theorem imply
∂F
∂ȳnew

n|N |

∂ȳnew
n|N|

∂ϕ
= −

∂F
∂ϕ

.

The claim follows since ∂ϕF = −1 and
∂F
∂ȳnew

n|N |
=
∑

t∈Tn|N|

S .

It can be easily shown that |Tn| > 0 for all n ∈ N, justifying the definition of Φ. Using the previous lemma,
we finally obtain the following monotonicity criterion:

Theorem 1. Let the spot market and redispatch model with linear demand functions and network fee ϕ be given
as in (15) and (16). Furthermore, let ψ∗redi be the optimal value of the redispatch model, ȳnew

n , n ∈ N, be the
spot market optimal electricity generation and Φ as defined in Lemma 2. Then, the budget function is strictly
increasing in [0,ϕ] if

dB
dϕ

> 0 ⇐⇒ Θgcb :=
∂ψ∗redi

∂ȳnew
n|N |

+ Φ−1
∑
n∈N

ȳnew
n − cinv

n|N | < 0 (25)

holds.

Proof. The definition of Θgcb follows directly from the preceding computations. Additionally, Θgcb is strictly
decreasing in ȳnew

n , n ∈ N: The second derivative of the optimal value function of the redispatch model (first term)
vanishes due to the envelope theorem and because the capacities appear only linearly in the Lagrangian. The
second term also vanishes after differentiating, and the derivative of the third term is Φ−1, which is also negative.
Moreover, Θgcb is increasing in the fee ϕ because ȳnew

n , n ∈ N, are decreasing in ϕ.

As a consequence, the correctness of the binary search thus follows if (25) holds for the generation capacity
corresponding to the upper bound ϕ̄.

In order to check (25) in practice, we finally note that the first term can be expressed by the dual variables of
the redispatch model. From standard sensitivity analysis of convex optimization (cf., e.g., [49]), it follows that

∂ψ∗redi

∂ȳnew
n|N|

=
∑
t∈T

βt,n|N|

holds, where βt,n|N| , t ∈ T , are the optimal dual variables of the upper bounds in (16b).

6.1.2. Monotonicity of the TO’s Budget Function for the Energy Based Fee
In order to show the correctness of the binary search algorithm for the case of the energy based fee ϕ = ϕeb,

we consider the slightly modified spot market model

max
d,y,ȳnew

ψspot :=
∑

n∈Ndem

∑
t∈T

∫ dt,n

0
pt,n(ξ) dξ −

∑
n∈N

cinv
n ȳnew

n +
∑
t∈T

cvar
n yt,n

 − ∑
n∈Ndem

∑
t∈T

ϕdt,n

s.t. 0 ≤ yt,n ≤ ȳnew
n for all n ∈ N, t ∈ T ,∑

n∈Ndem

dt,n −
∑
n∈N

yt,n = 0 for all t ∈ T .
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The redispatch model (16) stays the same. With these models at hand, we can rewrite the budget function as

B(ϕ) = ψ∗redi(ȳ
new(ϕ)) − ψ∗spot(ϕ) −

∑
n∈N

cinv
n ȳnew

n (ϕ).

Thus, the budget function is strictly increasing in ϕ if

dB
dϕ

= (∇ȳnewψ∗redi)
T∇ϕȳnew +

∑
n∈Ndem

∑
t∈T

dt,n −
∑
n∈N

cinv
n
∂ȳnew

n

∂ϕ
> 0 (27)

holds. As before,
∂ψ∗redi

∂ȳnew
n

=
∑
t∈T

βt,n

is known from standard sensitivity analysis. Thus, we have to compute ∇ϕȳnew. The main strategy is the same as
for the generation capacity based fee. Dual feasibility conditions of the spot market model read

pt,n(dt,n) − ϕ + λt = 0 for all n ∈ Ndem, t ∈ T , (28a)
−cvar

n + αt,n − βt,n − λt = 0 for all n ∈ N, t ∈ T , (28b)

−cinv
n +
∑
t∈T

βt,n = 0 for all n ∈ N. (28c)

As before, the first condition implies the equilibrium of spot market prices (19) for each time step t ∈ T . Thus, λt

can be eliminated in the first two conditions, yielding

βt,n = pt − cvar
n − ϕ + αt,n for all n ∈ N, t ∈ T . (29)

Finally, we can eliminate the β’s by combining (29) and (28c):∑
t∈Tn

(pt − cvar
n − ϕ) − cinv

n = 0 for all n ∈ N.

Using inverse market functions and the implicit function theorem (as in Sect. 6.1.1) to this system of equations
gives

∂

∂ϕ

 i∑
k=1

ȳnew
nk

 =
1
S

for all i = 1, . . . , |N |,

which readily implies
∂ȳnew

n1

∂ϕ
=

1
S

,
∂ȳnew

ni

∂ϕ
= 0 for all i = 2, . . . , |N |.

This gives us the following theorem:

Theorem 2. Let the spot market and redispatch model with linear demand functions and network fee ϕ be given
as in (26) and (16). Furthermore, let ψ∗redi be the optimal value of the redispatch model and ȳnew

n , n ∈ N, be the
spot market optimal electricity generation. Then, the budget function is strictly increasing in [0,ϕ] if

dB
dϕ

> 0 ⇐⇒ Θeb :=
∂ψ∗redi

∂ȳnew
n1

+ S
∑

n∈Ndem

∑
t∈T

dt,n − cinv
n1
< 0. (30)

holds.

Proof. The definition of Θeb again follows from the preceding computations. By the same arguments as before,
it can be shown that the demands dt,n are decreasing in ϕ. Since S < 0, this implies that the second term is
increasing in ϕ. Thus, Θeb is increasing in ϕ.

In other words, the last theorem shows the correctness of the binary search algorithm for energy based fees
and values of ϕ̄ that fulfill criterion (30).
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6.2. Computing Upper Network Fee Bounds

Given the importance of appropriate transmission fee bounds, we take the following strategy. In all trans-
mission fee regimes we use zero as a lower bound excluding negative transmission fees. Then, we compute
monopoly solutions and derive the respective monopoly markups. Based on the implicit assumption that the TO
does not charge fees that are larger than monopoly markups, we use these markups as upper bounds. In the case
of the energy based fee, we use the average monopoly markup across all time periods and market zones as an
upper bound. In the case of the generation capacity based fee, we use the cumulative monopoly markup across all
time periods, where total generation capacity is binding in a given zone. To obtain the upper bound we then take
averages over all market zones. As it can be seen easily, the computed upper bound for the generation capacity
based fee is in general much larger than for the energy based fee. In our computational study (cf. Sect. 7), the
obtained upper bounds fulfill the criteria developed in the last section and thus lead to a well-defined search
strategy.

6.3. Reduction Strategy for the Set of Network Configurations

An ingenuous way of incorporating all possible network configurations by simply introducing binary variables
for every extension and degradation typically yields very large mixed-integer problems that are hard to solve in
practice. In order to reduce the number of combinatorial choices, we model network extensions and degradations
in the following way: By Lnew

jk ⊆ Linter ∩ Lnew we denote the set of candidate transmission lines and by Lex
jk the

set of existing lines between zone Z j and zone Zk. Moreover, let Γ jk denote the set of transmission capacities
between the two zones that can be realized by an investment in or a degradation of a (sub)set of lines between the
zones, i.e.,

Γ jk :=

 f̄ jk =
∑
l∈X

f̄l : ∅ ⊆ X ⊆ (Lnew
jk ∪ Lex

jk)

 .

Since intra-zone transmission capacities do not affect spot market trading, intra-zone network modifications do
not have to be considered in the subproblem. This allows us to iterate only over the set of inter-zone network
modifications in the outer loop of Alg. 1. Moreover, we do not iterate over the specific network configurations
but over the set of relevant capacities, i.e., over all elements of∏

Z j,Zk∈Z, j,k

Γ jk.

By doing so, the constraint for f̄ jk ∈ Γ jk of a zonal version of the market splitting flow restrictions (12) now reads

− f̄ jk ≤
∑

l∈Linter
jk

ft,l ≤ f̄ jk for all t ∈ T .

On the other hand, the master problem determines both a welfare maximizing intra-zone network extension and a
welfare maximizing inter-zone network extension that yields the predefined inter-zone transmission capacity of
the given network extension and degradation plan. Thus, the master problem is additionally restricted by the
following constraint: ∑

l∈Lex
jk

(1 − zl) f̄l +
∑

l∈Lnew
jk

zl f̄l = f̄ jk for all Z j, Zk with j , k.

Note that this reduction technique is only possible given that physical line characteristics other than thermal
capacities do not play a role on the spot market.

Taken all together, the fixation of a network extension yields a concave-quadratic maximization over a
polyhedral set for the subproblem and additionally relaxing the budget constraint yields a concave-quadratic
mixed-integer maximization with respect to linear constraints for the master problem.
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1

Generation:
cvar = 10 $/MWh
cinv = 160 $/MW

2
Generation:
cvar = 11 $/MWh
cinv = 120 $/MW

3 Demand:
p = 550 − 500d

B = 8 MW h
f̄ = 0.25 MW h

B = 8 MW h
f̄ = 2 MW h

B = 8 MW h
f̄ = 2 MW h

B = 10 MW h
f̄ = 0.25 MW h
cinv = 4 $

Figure 3: Three-node test network

7. Case Studies

In this section we discuss computational results for two prominent test networks from the literature. The first
example is taken from [21] and consists of three nodes. The second test network is a six-node example by [50]
that has been widely used in the energy market literature. For both test cases (consisting of the network structure
as well as demand and cost parameters) we compute

1. the welfare optimum of the integrated planner model;
2. the market outcomes in the case of a redispatch model without market splitting;
3. the market outcomes in the case of a redispatch model with market splitting.

For the redispatch models we consider all three different network fee regimes, i.e., the lump sum, the energy
based, and the generation capacity based fee. Note that we transformed all parameters into equivalent annual
hourly values.

We implemented the redispatch model as well as the integrated planner model in Zimpl (see [51]) and used
SCIP (see [52]) to generate corresponding mps files. Finally, we solved the problems using CPLEX 12.6;
see [53]. All experiments were performed on a 12 core computer equipped with two AMD Opteron(tm) 2435
Processors and 64 GB DDR2-RAM. Using the binary search algorithm described in the last section, all models
are solved in a few minutes. This indicates that our method also seems quite promising for larger test instances.

7.1. The Three-Node Test Network
Before we present our main results, we briefly review the input data that is directly taken from [21]. The

graph consists of three nodes, three existing lines and one candidate line as depicted in Fig. 3, where all physical
and economical data of the network are given. We allow for both investment in the transmission network and in
generation capacity. We consider four time periods and assume that at the beginning of the planning horizon
there are no existing generators but explicitly model generation investment. Node 1 and node 2 are generation
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Table 3: Computational results for the three-node example

integrated 1 price zone 2 price zones
planner ϕls ϕeb ϕgcb ϕls ϕeb ϕgcb

normalized welfare (%) 100 97.0 96.4 96.0 97.0 96.4 96.0
candidate line yes yes yes yes yes yes yes
investment node 1 (MW) 0.11 0 0 0 0 0 0
investment node 2 (MW) 1.49 1.66 1.63 1.58 1.66 1.63 1.58

nodes. Technology 1 can be built at node 1 and technology 2 can be built at node 2. The equivalent availability
of capacity is 80 %.

Consumers are located at node 3. We assume that the demand function is p = 550 − 500d. To give the four
periods some simple interpretation, we refer to them as the four seasons spring, summer, autumn, and winter. For
this reason, we multiply the intercept of the above demand function by 1, 0.5, 1, and 1.5 in time period 1 to 4,
respectively.

7.1.1. Discussion
The integrated planner approach yields a social welfare of 1083 $. This is also the welfare level under a

nodal pricing model. A redispatch model with no market splitting, i.e., one price zone, implies a welfare loss
as compared to the first best solution in all three network fee regimes. In the case of a generation capacity
based fee, an energy based fee, and a lump sum fee the realized welfare levels are 1050 $, 1044 $, and 1040 $,
respectively. This welfare loss is mainly driven by a distortion of generation investment. As Table 3 illustrates,
the solution to the integrated planner problem implies positive investment in both technologies, where investment
in technology 2—which has lower investment cost—is much larger. On the contrary, the trilevel power market
model yields generation investment only in technology 2, as technology 1 would earn too little on the spot
market to recover investment cost. In addition, in our trilevel power market model generation investment in
technology 2 is higher than in the welfare optimum implying an overinvestment at node 2 for all network fee
regimes—lowest for the generation capacity based fee, highest for the lump sum fee. Even though generation
investment is inefficient in the solution to our market model as compared to the first best solution, line investment
is efficient in all three scenarios: The candidate line connecting the nodes 1 and 2 is build in the trilevel power
market model as well as in the welfare optimum. Interestingly, introducing a second price zone does not change
the presented results. This can be explained by the fact that no matter how the two price zones are designed,
there is always at least one non-congested line that connects the two zones.

These results suggest that generation investment can be inefficient in a market environment as spot markets
can induce wrong price signals. In addition, market splitting is not always a useful measure as it can leave the
welfare level unaffected. Apart from that, the trilevel power market model allows to measure the efficiency of the
energy system in general, e.g., to answer the question of how large the difference is between the market model
and the first best solution.

7.2. The Six-Node Test Network
We have seen that there is no difference between different network fee regimes and price zone configurations

for the small three-node network. This also shows that it might be necessary to consider more complicated
networks for discussing the effects of different market configurations and that it is not sufficient to discuss
different designs only on minimal test networks. In order to illustrate the effects of market splitting with our
model, we thus consider an adapted 52-period test example based on [50]. The network of this example has
extensively been analyzed in the literature to illustrate different energy market models. We extend the original
test example by several aspects that are important for our approach such as fluctuating demand, generation
investment, network investment, and a cost-based redispatch mechanism.

As Fig. 4 illustrates, the network consists of six nodes connected by eight existing transmission lines (solid).
Northern nodes (nodes 1 to 3) and southern nodes (nodes 4 to 6) are interconnected by lines with unlimited
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Table 4: Computational results for the six-node example

integrated 1 price zone 2 price zones
planner ϕls ϕeb ϕgcb ϕls ϕeb ϕgcb

normalized welfare (%) 100 62.1 81.8 81.8 94.5 94.2 94.0
candidate line 1 no yes yes yes yes yes yes
candidate line 2 no no yes yes no no no
investment node 1 (MW) 252 2009 1423 1423 1317 1206 1204
investment node 2 (MW) 794 0 0 0 0 0 0
investment node 4 (MW) 620 0 0 0 370 264 251

capacities. The “northern zone” and the “southern zone” are interconnected by only two lines with limited
capacities. We consider a situation where two different candidate transmission lines (dashed) can be build to
alleviate congestion problems. The technical line data as well as all other data is given in Fig. 4. The equivalent
availability of capacity is 80 %.

We assume that there are no existing generators but explicitly model generation investment. Generation
units can be build at nodes 1, 2, and 4. Demand is located at nodes 3, 5, and 6. The basic demand functions are
p3 = 37.5 − 0.05 d3, p5 = 75 − 0.1 d5, p6 = 80 − 0.1 d6. Assuming these three demand functions taken from [50]
we use real-world data to induce demand fluctuation across the 52 periods at all nodes.4 In particular, we use
factors derived from the German 2011 demand realizations for shifting the demand functions; see [54]. Demand
levels across nodes in a given period are always shifted by the same factor, which accounts for the fact that the
level of demand in a given period is typically correlated across demand nodes.

7.2.1. Discussion
Table 4 shows the welfare levels in the case of one and two price zones as compared to the welfare optimum.

Market splitting significantly increases welfare but does not achieve the maximum. While welfare levels under
different network regimes are rather similar in the case of two price zones, we find substantial welfare differences
for different network regimes in the case of a single price zone, i.e., without market splitting.

Table 4 also illustrates investment decisions in transmission lines and generation capacities for the different
scenarios. In the welfare optimum the social planner refrains from transmission line expansion with positive
generation capacities being installed at all nodes. Obviously, from a welfare perspective investment in generation
capacity at node 4 is preferable to any line investment, although variable production cost of the available
technology is substantially higher than variable cost of technologies available at northern nodes. Furthermore,
due to the fact that demand satisfied by northern generators is relatively low in the absence of line investment,
more generation capacity is built at node 2, where investment cost is lower than at node 1.

Turning to the case of a power market without market splitting, we find that both candidate lines are built,
except for candidate line 2 in the case of the lump sum fee, and that generation capacity is exclusively installed at
node 1. The intuition is straightforward: Recall that we have no price zones and that transmission constraints are
not accounted for at the spot market. In this case the generator with lowest production cost will trade at the spot
market while other generators will predominantly be called for at the redispatch stage. The fact that redispatch
reimbursement covers only variable cost immediately implies that those generators cannot operate profitably.
Consequently, all capacity investment occurs at the node where the production cost is lowest, which is at node 1.
Anticipating this decision, the network planner prefers to install both candidate lines—except for the case of a
lump sum network fee, where only line 1 is built.

Finally, consider the scenario with two price zones: north and south. Obviously, market splitting allows a
generator in the south to earn rents whenever it is impossible to satisfy demand in the south by production from
northern generators due to transmission congestion. As a consequence, firms have an incentive to install capacity

4Alternatively, one could choose random draws from a distribution that reflect the nature of demand fluctuation in electricity markets.

21



3

Demand:
p = 37.5− 0.05d

2
Generation:
cvar = 15 $/MWh
cinv = 600 $/MW

1
Generation:
cvar = 10 $/MWh
cinv = 700 $/MW

5 Demand:
p = 75− 0.1d

6Demand:
p = 80− 0.1d

4
Generation:
cvar = 42.5 $/MWh
cinv = 200 $/MW

B = 1 MW h
f̄ =∞

B = 1 MW h
f̄ =∞

B = 1 MW h
f̄ =∞

B = 0.5 MW h
f̄ = 200 MW h

B = 0.5 MW h
f̄ = 250 MW h

B = 1 MW h
f̄ =∞

B = 1 MW h
f̄ =∞

B = 1 MW h
f̄ =∞

Candidate line 1:
B = 0.5 MW h
f̄ = 200 MW h
cinv = 230 000 $/MW

Candidate line 2:
B = 0.5 MW h
f̄ = 200 MW h
cinv = 230 000 $/MW

Figure 4: Six-node test network
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Figure 5: Spot market and nodal prices for the energy based fee. Nodal prices are plotted in black (node 3: solid, node 5: dotted, node 6:
dashed) and spot market prices are plotted in green (one zone spot market price: solid, two zone spot market price at northern node: dotted,
two zone spot market price at southern node: dashed).

at node 4, which in turn decreases the incentives of the network planner to install additional transmission capacity.
Consequently, anticipation of generation investment at node 4 leads to less transmission investment by the TO:
only one line is built. As a consequence, market splitting moves the whole system closer to the welfare optimal
scenario.

Prices for the case of an energy based fee can be seen in Fig. 5 and support the above intuition. In the welfare
optimal solution, prices at the consumption nodes are low in the north (node 3) and high in the south (nodes 5 and
6). With one price zone the spot market price is relatively high. However, generators with high unit production
cost have no chance to contract their supply at the spot market. Two price zones also imply a north-south spread
which allows the southern generators to recover their investment cost.

8. Conclusion and Outlook

This paper analyzes the long-run impact of different transmission management regimes on investment
incentives of generating firms in a market environment with a regulated TO. We propose a trilevel optimization
approach to model an electricity market with cost-based redispatch both with and without market splitting. As
a first best benchmark we also solve the corresponding integrated planner problem, in which a central planner
controls both the grid and generation units. In order to solve our trilevel problem computationally, we present a
reformulation that relies on a detailed analysis of the interconnection between the three problem levels. We apply
our approach to two simple test instances in order to demonstrate the capabilities to analyze transmission and
capacity expansion in a market environment.

Our results clearly show that in a market environment investment choices by the TO and private firms can
substantially differ from welfare optimal choices. Obviously, investment in generation units is driven by the
incentives for private investors induced by the particular market environment. Absence of proper incentives
affects locational decisions of generators and this, in turn, can have substantial effects on optimal line investment.
In two examples we demonstrate that welfare optimal line investment is affected significantly by the investment
in generation capacity anticipated by the TO. We demonstrate that our model allows to compare different network
management regimes and assess their effects on long-run investment decisions. Our approach is, thus, an
important extension of various studies that up to now have mainly considered the short-run properties of different
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transmission management regimes. As we show, transmission management has also important implications in
the long-run when generation and transmission expansion are taken into account.
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AppendixA. Notations and Symbols

Symbol Description Unit

G Transmission network —
N Set of nodes of the transmission network —
Ndem Set of demand nodes —
T Set of time periods —
Z Set of zones for market splitting —
Gall

n Set of all generation technologies at node n ∈ N —
Gex

n Set of existing generation technologies at node n ∈ N —
Gnew

n Set of candidate generation technologies at node n ∈ N —
L Set of line types —
Lex
` Set of existing transmission lines of type ` ∈ L —

Lnew
`

Set of candidate transmission lines of type ` ∈ L —
Linter
` Set of inter-zone transmission lines of type ` ∈ L —

Lex Set of all existing transmission lines (set of arcs of graph G) —
Lnew Set of all candidate transmission lines —
Linter Set of all inter-zone transmission lines —

dt,n Demand at demand node n ∈ Ndem in time period t MW h
pt,n Price function at demand node n ∈ Ndem at time period t $/MWh
sn Slope of pt,n at demand node n ∈ Ndem $/MWh2

at,n Intercept of pt,n at demand node n ∈ Ndem in time period t $/MWh

cinv
g Investment cost of candidate generation technology g ∈ Gnew

n $/MW
cvar

g Variable cost of generation technology g ∈ Gall
n $/MWh

cinv
l Investment cost of candidate transmission line l ∈ Lnew $

cdel
l Degradation cost of existing transmission line l ∈ Lex $

Bl DC-power-flow-scaled susceptance of line l ∈ Lex ∪ Lnew MW h
θt,n Voltage angle in node n ∈ N at time period t rad
ft,l Power flow on line l ∈ Lex ∪ Lnew in time period t MW h
f̄l Maximum power flow on line l ∈ Lex ∪ Lnew MW h
αg Equivalent availability of generation technology g ∈ Gall

n 1
yt,g Power generation of generator g ∈ Gall

n MW h
ȳnew

g New power generation capacity installed of generator g ∈ Gnew
n MW

ȳex
g Maximum power generation capacity of generator g ∈ Gex

n MW

E Expenses of the transmission network operator $
R Revenues of the transmission network operator $
ϕls Lump sum fee $
ϕeb Energy based per unit fee $/MWh
ϕgcb Generation capacity based per unit fee $/MW

zex
l Decision variable for existing line l ∈ Lex —

znew
l Decision variable for candidate line l ∈ Lnew —
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