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1. Introduction

Governments around the world are eager to replicate the success story of venture capital

in the United States. Companies such as Google, Apple, Microsoft or Oracle received

financing from venture capital funds during their infancy. These companies are at the

forefront of innovation, and are seen as key to robust economic growth. Not surprisingly,

governments all over the world try to stimulate the venture capital industry through

public policy: venture capital funds are tax free in France and the UK, the Canadian

government directly acts as a venture capitalist through the Business Development Bank

of Canada and the European Union provides financing for venture capital funds with

the help of the European Investment Fund.

However, government intervention seems justified only if there are market failures that

prevent venture capital funds from investing the efficient amount of capital. Such mar-

ket failures could arise from externalities generated by venture capital financed firms on

other firms.1 In this paper we focus on innovation spillovers as one potential motivation

for government intervention. In particular, we attempt to measure spillovers from ven-

ture capital financed firms on the research productivity of established companies and

other venture capital financed companies. Furthermore, we compare these spillovers to

innovation spillovers generated by established companies. A comparison of the relative

size of these spillovers is important in order to be able to judge whether or not VC

financed innovation activities deserve preferential treatment over innovation activities of

established companies.

For this purpose we study two groups of firms, venture capital financed firms on the

one hand and publicly listed “established” firms on the other hand. As a measure for the

innovation outcome of each firm we use the number of patents and the number of patent

citations where the latter is often interpreted as reflecting the quality of patents. To

1Other motivations for government intervention could arise from capital market imperfections.
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capture the innovation input, we use the R&D stock of established companies (R&D) and

the venture capital stock received by VC-financed firms (V C), the idea being that (early

round) venture capital investment is devoted to a large extent to innovation activities.

To gauge the effect of R&D and VC on innovation we regress the number of patents and

the number of cites of each firm on two spillover measures, SpilloverV C and SpilloverEst,

and on their own R&D activity.

To determine potential spillovers we first identify the companies from which spillovers

might originate - the spillover pool - by calculating the distance in technology between

each pair of companies. The underlying assumption is that it is more likely that spillovers

come from companies that do research on similar things, i.e. that the spillover pool are

companies in the close technological vicinity. To capture the distance in technology

space between two firms, we use two different measures, the Jaffe-measure and the

Mahalanobis-measure, as described in Bloom et al. [2012]. Next we calculate a measure

of how much spillovers a company might receive from the spillover pool. To capture

the spillovers a firms experiences from VC-financed firms, we multiply for each firm the

technological distance to every VC-financed company with its respective venture capital

and then we sum up over all VC-financed firms. Similarly, we calculate a spillover

measure from established firms’ R&D.

For our estimation, we use a negative binomial model since our dependent variables are

count data variables. To account for firm heterogeneity, we control for pre-sample fixed

effects. One potential concern about the estimation one might have is that the empirical

specification might suffer from an endogeneity problem. Suppose a particular technology

field experiences a positive technological shock. Then it might be easier to produce

patents in this field and at the same time companies working in the same technology field

might increase their research and development outlays. Similarly, venture capital funds

might allocate their investment to technology fields hit by a positive shock. Therefore
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the two spillover terms might pick up the effect of technological progress and as a result

could be spuriously high. To address this endogeneity problem we first use a proxy

variable and then an control variable approach with two instrumental variables.

Technological progress might either come from the research done from basic research

institutes such as universities or from R&D of other companies. The latter technological

progress is not problematic because this is the exactly what we want to measure as

spillovers. In contrast, technological opportunities originating from academic research

might bias our estimates. Therefore we include measures for the patenting activity of

universities in the technological field of the considered company as proxy for technological

progress.

For the control function approach we instrument R&D expenditures of established

companies with the level of R&D tax credit in a state as in Bloom et al. [2012] and

venture capital investment with past fund-raising of buyout funds [Nanda and Rhodes-

Kropf, 2012]. The idea is that the introduction of R&D tax credits in the different

U.S. states has a direct influence on the level of research and development by lowering

costs. At the same time, it is unlikely that government officials are able to react in

time to a change in the technological frontier. Venture capital is instrumented with past

fund-raising of private equity buyout funds. Buyout funds and venture capital funds

belong both to the class of private equity. Institutional investors often allocate funds

to private equity without distinguishing between the two subclasses. Therefore buyout

fund-raising is correlated with venture capital fund-raising but supposedly uncorrelated

with the arrival of technological opportunities of VC backed companies.

To arrive at our dataset, we combine data from the Compustat database with venture

capital data from Thomson Reuters VentureXpert. Compustat contains balance sheet

data for all U.S. publicly listed companies. VentureXpert is a prime source for venture

capital investment and fund-raising data. We select all companies which patented at
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least once in the period form 2000 to 2010. Patent data are from the NBER U.S. Patent

Citations Data File for which we create a name match per hand to the venture capital

data. For the Compustat Data, the NBER provides a unique identifier to match the

balance sheet data with patent counts and cites.

The contribution of our paper is twofold. First, we provide a direct measurement of

innovation spillovers generated by venture capital financed firms that are technologically

close. We find that increasing venture capital in the technological vicinity of a company

increases the propensity of other companies to produce (highly cited) patents, both for

VC financed as well as established companies. In contrast, our results suggest that R&D

expenditures of established companies generate positive but relatively small spillovers

on other companies. A back of the envelope calculation suggest that around 150 million

dollar additional R&D spending leads to one more spillover-induced patent, while for

the same effect only 3 million dollar of venture capital are necessary. However, R&D is

privately much more effective than venture capital: An established company needs to

invest only 5 million dollar to get an additional patent while a venture capital backed

company needs to invest 2.5 times the amount.

A second contribution of our paper is to investigate potential channels through which

these spillovers might be effective. TO BE COMPLETED.

Our analysis complements the paper by Bloom et al. [2012] who study spillovers

generated by established companies. They find positive spillovers from R&D to cite-

weighted patents, but also consider the effect of spillovers on Tobin’s Q and productivity.

It is therefore part of the large literature on the private and social returns of R&D which

is summarized in Hall et al. [2009]. In general, this literature finds large and positive

social returns of R&D, yet does not consider any effects from venture capital.

Our paper is also related to Kortum and Lerner [2000] which started the literature

on the contribution of venture capital to innovation. They find that venture capital is
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much more potent than R&D in producing patents. From 1983 to 1992 venture capital

accounted for 8% of industrial innovation, while the ratio of venture capital to R&D

was only 3%. Our paper confirms that venture capital is more effective in generating

patents. However, in addition to this finding, we disentangle direct and indirect effects

of venture capital financing on patent production and show that VC is less effective in

stimulating patent production than R&D, but generates significantly higher spillovers

to other companies.

Literature survey: TO BE COMPLETED

The paper proceeds as follows: In section 2 we lay out the conceptual and empirical

framework for measuring spillovers of R&D and venture capital. In section 3 we dis-

cuss data construction and in section 4 we present our empirical results and section 5

concludes.

2. Conceptual and Empirical Framework

2.1. Patent Production Function

Suppose that the patent production function of company i at time t has the following

Cobb-Douglas form:

Pi,t =
(
SpilloverV C

i,t

)γV C · (SpilloverEst
i,t

)γEst ·Gβ
i,t ·Ni,t · Ai · εi,t (1)

Gi,t is the R&D stock (R&D) if the company is already established in the market or

the venture capital stock (V C) if the company is backed by a venture capital fund. Ni,t

is the general technological progress which makes it easier or harder to innovate, Ai is

the firm-specific constant productivity, εi,t is a company and time specific shock and

SpilloverV C
i,t and SpilloverEst

i,t are the spillovers from venture capital financed compa-

nies and established companies respectively. This simple functional form is used in the
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innovation literature at least since Griliches [1979] and employed in numerous studies

of the R&D-patenting nexus. In this model spillovers change the marginal productiv-

ity of R&D investment for a company depending on the the two parameters γV C and

γEst. A priori we allow these two parameters to be different, reflecting the potentially

different effectiveness of spillovers of venture capital-backed companies and established

companies. The reason for this difference might be that venture capital-backed focus on

more radical innovations than conventional R&D or define completely new applications

of existing technologies.

Spillovers between companies might come from different sources: A successful novel

product might serve as a proof of concept for an experimental technology signaling the

commercial value of further development. Thus a company company might be able

to avoid errors and dead ends inherent to research. More concretely it could learn

specifics by reverse engineering the product of the competitor, thus lowering the costs

of imitation. Another possibility is, that scientists or other employees switch between

companies taking knowledge about successful procedures and processes with them. Or

quite simply, company scientists read the results of other companies’ research in journal

articles or hear about them on conferences. In short, learning from other companies

might result in positive spillovers. In contrast, if companies do research on similar things

they might engage in patent races to secure the property rights of a certain invention.

This might lead to negative spillovers. If the learning effect or the competitive effect is

larger is an empirical question which we address in this study.

In all cases spillovers predominantly originate from companies which do similar things

in a technological sense: Learning from products or employees of other companies might

be easier within a technological area. For example it is likely that Google can learn more

from Microsoft than from an aluminum producing company such as Alcoa. Similarly

patent races only happens between companies which aim to invent exactly the same
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thing.

Therefore, there is for every company a set of companies from which it is more likely

that spillover might originate. This set is called the spillover pool and is defined by tech-

nological proximity. The technology proximity and the resulting spillovers are calculated

with the methods set out in Bloom et al. [2012].

2.2. Calculating Spillovers

We first calculate the share of patents company i has in each technology class, thus

establishing the technological profile Ti for this company. Then calculate the technology

proximity Proximityi,j between company i and company j by using the uncentered

correlation between these two vectors following Jaffe [1986]:

Proximityi,j =
TiT

′
j

(TiT ′
i )

0.5 · (TjT ′
j)

0.5

As this index is a correlation coefficient it ranges from zero to 0. A value of one implies

a perfect overlap between the share vector of the two companies and thus a very similar

technological focus. If two companies have a technological proximity of zero, then they

do not have a single patent in the same patent classes.

In later versions of this study we also plan to use the alternative Mahalanobis proximity

measure which introduces the weighing matrix Ω in the Jaffe metric:

ProximityMal
i,j =

TiΩT
′
j

(TiT ′
i )

0.5 · (TjT ′
j)

0.5
.

This weighing matrix is calculated as the uncentered correlation of patent shares across

patent classes. This means that two companies with the same overlap in patents would

receive a higher score if the underlying technologies are similar compared to the case

that the technologies are dissimilar.
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After determining the proximity between each and every company, we can construct

the spillover from established companies to company i by summing up the proximity

weighted investment in R&D for all other companies:

Spilloveri,t =
∑

j �=i

Proximityi,j ·R&Dj,t

Analogously the the spillovers from venture capital financed companies are defined by

SpilloverV C.
i,t =

∑

j �=i

Proximityi,j · V Cj,t

2.3. Econometrics

In order to be able to use standard count data methods for estimation, we rewrite

Equation (1) to

Pi,t = exp(γV C · lnSpilloverV C
i,t + γEst · lnSpilloverEst

i,t +

+ β · lnGi,t + lnNi,t + lnAi + δXi,t + ui,t) (2)

where Xi,t is additionally a vector of control variables influencing patent production.

The firm fixed effect lnAi is estimated Blundell [2002] using pre-sample mean scaling,

because of the non-linearity of the estimating equation. The idea is that the average

patents in the ten years prior to the sample period is a consistent estimator for the

time-invariant firm productivity.

Estimating Equation 2 is not straightforward, because we cannot observe technological

progress, Ni,t, directly. Consequently technological progress might bias our estimates if

it is correlated with either of the other explanatory variables. The source of such a

correlation could be, that all or subset of companies observe technological progress (for
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example originating from university research) and in response adjust their R&D spending

or venture capital investment, resulting in an increase of the spillover measures. Then we

would attribute all of the resulting increase in patenting to spillovers while it is in reality

driven by the change in technological opportunities. But there are also two cases where

technological progress does not cause any harm: First, if no one can observe technological

progress and it is transitory then our estimates are consistent as technological process

is subsumed in the error term ui,t. Second, if technological progress originates from the

R&D of one of the companies in our sample then these are exactly the spillovers we want

to measure.

In our setting we can think of three possible ways to address this left out variable bias:

(1) using a proxy for technological opportunities or (2) instrumental variables influencing

investment but not technological progress and (3) with functional form restrictions. We

discuss the first two methods in turn and relegate the discussion of third method, which

is much less commonly used in applied work, to the appendix.

To proxy technological progress we need a variable which is highly correlated (optimal

would be a sufficient statistic) with technological progress and observable to us. Then,

after controlling for the proxy, the bias in our estimates should vanish or at least be

reduced. Our candidate for such a proxy variable is the share-weighted patent count of

research institutes and universities in the technology classes in which a company is active.

More active patenting of basic research institutions or competitors might indicate a shift

in technological opportunities. A problem of this approach is that these institutions

might patent more because of the R&D of US companies. Then these variables would

be bad controls and bias our estimates.

The second possibility to deal with endogeneity is the use of instrumental variables.

With this method we measure technological progress by excess investment in R&D or

venture capital over and above the level expected from exogenous factors, the instru-
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ments. Following Bloom et al. [2012], we use supply side shocks introduced by the

introduction of R&D tax-credits as instruments for R&D expenditures of established

companies. These tax-credit lower the cost to do R&D and therefore should in equilib-

rium increase its optimal level. Furthermore, the existing literature surveyed in Bloom

et al. [2012] suggests that there is a large degree of randomness in the introduction and

the level of R&D tax-credits across states and therefore it is plausible that a change in

the instrument is exogenous to technological progress.

As instrument for venture capital spending we use fund-raising of leveraged buy-

out funds one year before the investment following Nanda and Rhodes-Kropf [2012].

The supply of venture capital is greatly influenced by the asset allocation of institu-

tional investors into “private equity”, the broad category encompassing venture capital

and buyout funds. By using buyout fund-raising we hope to capture that part of VC

investments which are due to increases in available capital unrelated to technological

opportunities presenting to investee companies. This instrument is therefore helpful if

past fund-raising does not systematically predict technological opportunities two years

later.

The application of instrumental variable techniques in this setting is not straightfor-

ward as the estimation equation is nonlinear. Therefore we have to resort to control

function methods. For that reason we use a four step procedure: First, we regress the

instrument on current R&D expenditures (R&Dcurrent) and current venture capital in-

vestments (V Ccurrent) to calculate predicted values for these two quantities. Second, we

multiply the predicted values with the distance matrix to arrive at predicted spillovers.

In a third step we regress the actual spillovers on the predicted spillovers and calcu-

late the residuals. Given that the predicted values are exogenous these residuals should

capture all of the technological progress. In the final step we calculate the fifth order

polynomial of these residuals and use them as controls in the estimation equation (2).
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Thus technological progress is here the identified with the excess investment in venture

capital and R&D over and above what would be expected from the prediction of the

instrumental variables. We relegate the first stage regressions and the calculation of the

control function to the appendix.

3. Data

We combine three standard data-sources to arrive at our final dataset: The NBER

Patent-Citation Data File, Thomson Reuters VentureXpert and the U.S. CompuStat

File. The NBER Patent Data contains all utility patents filed in the US with name

of the applicant, year of application, the state of application, the number of cites a

patent receives from 1976 to 2006 and a classification according to the US 3-digit current

classification (CCL). This classification is determined by the patent examiner and sorts

patents into one of 400 functional groups.2 Therefore this classification give a fine grained

view of the the wide variety of patents and correspondingly of the technological focus

of the patent assignee. As we have only data on US companies we restrict our attention

to patents filed in the US by US companies. The resulting dataset contains around 1.45

million Patents and is matched to the two firm data sources which we discuss next.

Our first firm level data source is the US CompuStat file. This data can be easily

matched to the the NBER Patent-Citation Data File over a unique identifier provided by

the NBER team [Hall et al., 2001]. The CompuStat File contains yearly accounting data

for US publicly listed companies with company name, the fiscal year, the state of the firm

head quarter, the four-digit SIC code, sales and research and development expenditures.

From this file we keep all companies which report R&D expenditures for at least four

successive years. To calculate the R&D stock from R&D expenditures we apply the

perpetual inventory method with a 15% depreciation rate (following inter alia Hall et al.

2In theory there are 800 functional groups, yet we only observe a positive patent count in 400 of them.
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2005), so the R&D stock in year t is given by R&Dt = (1−0.15) ·R&Dt−1+R&Dcurrent
t .

Additionally, we delete all companies with an increase in sales of more than 100% or

a sales decrease of more than 50% in two consecutive years because this reflect either

M&A activity or an error in the data. The resulting database contains 2389 companies

with 500’480 patents. Summary statistics are shown in Table 1.

Table 1: Summary statistics: Established Companies
mean sd min max p10 p90

# patents 19.94 100.91 0.00 4339.00 0.00 36.00
# cites 190.39 1086.35 0.00 45512.00 0.00 282.00
ln(Spillover VC) 4.08 1.98 -10.89 8.52 1.70 6.61
ln(Spillover Est.) 9.64 1.04 3.03 12.00 8.28 10.82
ln(R&D) 3.14 2.24 -5.81 10.69 0.38 6.13
ln(pre-sample F.E.) 0.90 2.08 -2.30 5.60 -1.61 3.94
ln(pre-sample F.E.) 3.25 2.15 -1.61 8.47 0.69 6.22
Observations 20666

The second firm level data source is Thomson Reuters VentureXpert which comprises

investments data in US venture capital (VC) financed companies. Each dataset contains

the name of the investee company, the investment date, an four-digit SIC code and the

estimated amount invested. The latter is our main measure for total available funds

of a company, assuming it does not get additional outside funding. In addition we

know the investment stage of the company, so if it is a seed, a early stage, expansion

or late stage investment. As we are only interested in the effect of R&D done by VC-

backed companies, we delete all rounds except seed and early stage rounds, because

it seems reasonable to assume that VC-backed companies are focused in later stages

on marketing and not on product development. Additionally, we delete all companies

which first investment is before 1980. Analogous to the calculation of the R&D stock

we calculate the VC stock with perpetual inventory method, so the VC stock is given

by V Ct = (1− 0.15) · V Ct−1 + V Ccurrent
t .
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We match this investment data by company name to the patent data with the help of

algorithms from the Apache Lucene library. In a second step we check the matches per

hand. The resulting dataset contains 1620 companies with 65’367 patents. Summary

statistics are shown in Table 2.

Table 2: Summary statistics: venture capital-Backed Companies
mean sd min max p10 p90

# patents 1.53 4.18 0.00 186.00 0.00 4.00
# cites 19.42 77.38 0.00 3008.00 0.00 46.00
ln(Spillover VC) 5.33 1.83 -10.03 8.44 3.05 7.41
ln(Spillover Est.) 9.81 0.95 4.72 11.86 8.60 10.84
ln(VC) 1.79 1.46 -7.36 5.70 -0.13 3.48
ln(pre-sample F.E.) 0.78 0.86 0.00 4.72 0.00 2.08
ln(pre-sample F.E.) 3.37 1.46 0.00 6.79 1.39 5.15
Observations 9136

4. Results

4.1. Main results

Table (3) summarizes the results for the effect of spillovers on the number of patents and

the number of citation-weighted patents as dependent variables. In the first two columns

the observational unit are the established companies while in column three and four, we

analyze the patenting behavior of venture capital backed companies. All but one of the

estimated coefficients are positive and significantly different from zero on conventional

levels. This counts as prima facie evidence for technology driven spillovers, but — as

discussed above — the coefficients might just take up the influence of technological

progress. If this is the case our estimated coefficient overstate the true effect.

Our first step to address this endogeneity problem is to use the patenting activity of

academic institutions around the world as a proxy variable for technological progress.
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Table 3: Baseline Results

Established Companies venture capital Companies

# Patents # Cites # Patents # Cites

ln(Spillover VC) 0.14∗∗∗ 0.20∗∗∗ 0.15∗∗∗ 0.15∗∗∗

(0.03) (0.04) (0.05) (0.05)
ln(Spillover Est.) 0.31∗∗∗ 0.29∗∗∗ 0.50∗∗∗ 0.33∗∗∗

(0.06) (0.07) (0.09) (0.10)
ln(R&D) 0.59∗∗∗ 0.53∗∗∗

(0.02) (0.02)
ln(VC) 0.20∗∗∗ 0.22∗∗∗

(0.05) (0.04)
Firm F.E. Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
N 20666 20666 9136 9136

Notes:

Technological progress might originate from academic research and as we are predom-

inantely interested in patentable innovation it seems sensible to assume that at least

some of the patents resulting from the novel technology are taken out by the inventive

university. Therefore we use the number of patents in the current and the next year as

well as the number these patents are cited as proxy variables. As technological progress

might differ between technological fields in a given year, we only use the patents in the

field a company is active, making our proxy firm-specific.

We report the results controlling for the proxy variables in Table 4. It is reassuring

to note that the coefficient for most proxy variables are significantly different from zero.

Compared to the estimates in Table 3, the resulting coefficients are - as expected -

mostly smaller. This is in line with the idea, that technological progress biases the

uncontrolled estimates away from zero. Still, with this proxy variable strategy we miss

out all technological opportunities which require some further development before they

become patentable, such as basic research.
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Table 4: Proxys for the Technological Frontier

Established Companies venture capital Companies

# Patents # Cites # Patents # Cites

ln(Spillover VC) 0.09∗∗ 0.10∗∗∗ 0.11∗∗ 0.14∗∗∗

(0.04) (0.04) (0.05) (0.04)
ln(Spillover Est.) 0.24∗∗∗ 0.23∗∗∗ 0.41∗∗∗ 0.35∗∗∗

(0.06) (0.07) (0.09) (0.10)
ln(R&D) 0.59∗∗∗ 0.54∗∗∗

(0.02) (0.02)
ln(VC) 0.19∗∗∗ 0.22∗∗∗

(0.05) (0.04)
ln(# Patents Univ) -0.15∗∗∗ -0.30∗∗∗ -0.18∗∗ -0.59∗∗∗

(0.06) (0.08) (0.07) (0.11)
ln(# Cites Univ) 0.15∗∗∗ 0.30∗∗∗ 0.15∗∗∗ 0.33∗∗∗

(0.04) (0.05) (0.05) (0.07)
ln(# Patents Univ_t+1) 0.08∗ -0.13∗ 0.17∗∗ -0.02

(0.04) (0.07) (0.07) (0.10)
ln(# Cites Univ_t+1) 0.05∗∗ 0.26∗∗∗ 0.04 0.28∗∗∗

(0.02) (0.04) (0.04) (0.04)
Firm F.E. Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
N 20666 20666 9136 9136

Notes:

Our second approach to deal with the left-out variable problem is to use instrumental

variable regression with changes tax credits as instruments for R&D spending and past

fund-raising as instruments for venture capital investment. We use a control function

approach instead of the usual two-step IV because the estimating equation (2) is non-

linear . The first stage regressions and the regressions for calculating the control function

are reported in Appendix A. The F-Values for joint significance of the instruments are

mostly above 10 and therefore seem sufficient to consistently estimate the coefficients

and standard errors.

The estimation results with control functions are reported in Table 5. For the sake of

brevity we only report the first term of the fifth order polynomial of the control function.
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Although the first term is not in all specification significantly different from zero, all five

terms are jointly significant in all cases. Again, the estimated coefficients are smaller

than the estimates in Table 3. Therefore both, the proxy variable and the instrumental

variable approach seem to make some headway controlling for technological progress.

Table 5: Control Function Results

Established Companies venture capital Companies

# Patents # Cites # Patents # Cites

log Spillover Venture 0.09∗∗ 0.17∗∗∗ 0.15∗∗ 0.31∗∗∗
(0.05) (0.05) (0.07) (0.09)

log Spillover Est. 0.28∗∗∗ 0.22∗∗ 0.59∗∗∗ 0.29∗∗
(0.08) (0.09) (0.11) (0.15)

log Cum. R&D 0.68∗∗∗ 0.61∗∗∗
(0.03) (0.03)

Cum. Venture Capital 0.26∗∗∗ 0.32∗∗∗
(0.04) (0.04)

Control Spill VC 0.12 -0.08
(0.08) (0.10)

Control Spill Est. -0.45 -0.22
(0.35) (0.46)

Control R&D -0.38∗∗∗ -0.54∗∗∗
(0.06) (0.07)

Control Spill VC -0.09 -0.60∗∗∗
(0.14) (0.18)

Control Spill Est. -1.52∗∗∗ -3.49∗∗∗
(0.46) (0.67)

Control VC -0.21∗∗∗ -0.39∗∗∗
(0.06) (0.08)

Firm F.E. Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
N 18069 17843 10131 10131

Notes:

As both methods work through adding control variables, we can also combine these

two approaches. The resulting coefficients are reported in Table 6. Even columns report

the coefficients for the full sample for the years 1980 to 2005 and uneven columns report

the estimates for the years before 1999. In the full sample, the spillover terms are again
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Figure 1: Seed and Early stage venture capital investment over time
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smaller than in the baseline case and even smaller than the estimates resulting from either

the proxy variable or the instrumental variable approach alone. All coefficients (but one)

associated with spillovers from venture capital are close to zero and insignificant.

If we restrict the sample to the twenty years from 1980 to 1998, the coefficients turn

significant again. Starting in 1998 a tremendous run up of prices of any stock related

to computer technology led to a surge in venture capital investing (Figure 1). Appar-

ently, companies which received investment during this period were significantly different

compared to companies which received investment before. In unreported regressions we

achieve similar results in the full sample after dropping the SIC codes related to the

production of computers (3674) and software engineering (7372). In the following we

interpret the size of coefficients and the quantitative impact of spillovers by using the

results from the pre-bubble sample in Table 4.
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4.2. Back of the envelope: Size of Effect

Calculating the size of the spillover effects the results in Table 6 is complex because all

coefficients are in percentage terms: Increasing the R&D capital stock of a established

company by 10% increases the number of patents by 6.6 %. Obviously, 10% percent

are quite different in dollar terms for a large and a small company and therefore the

underlying firm heterogeneity might matter a lot for the quantitative implications. So

we do two things: First, we calculate the size of the effects for a company which is exactly

at the mean of the sample (Table 1 and Table 2). This is simple, transparent and the

numbers can be easily verified. In a second step we calculate a complete counterfactual

simulation.

Taking the estimates of Table 6 at face value, a 10% increase in the R&D stock results

in 6.6% more patents taken out by this firm, while a 10% increase in the venture capital

stock results in around 2.2% more patents for the venture capital backed company.

In dollar terms, a 10% increase in R&D stock is around 2.31 million dollar and 6.6%

correspond to 1.32 patents as shown in Table 7. Correspondingly an increase of 0.60

million dollar results in 0.4 patents for venture capital backed companies (Table 8).

According to these estimates a patent from conventional R&D costs 1.76 million dollar

while from VC it costs 1.50 million dollar.

Comparing the relative sizes of the spillovers is tricky, because spillovers are distance

weighted R&D/VC stocks. Therefore the simplest counterfactual is to abstract from

the technological proximity and just calculate what would happen if a company with

technological proximity one would increase its spending.

If we consider an established company, a 10% percent increase in spillovers originating

from another established company of proximity one (i.e. 1536 million dollar) results in

2% or 0.38 more patents, while a 10% increase originating from another VC company

(6.7 million dollar) results in 1.1% (0.22 patents). Thus, spillovers from VC companies
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Table 7: Established Companies: A 10% increase at the mean delivers...

Mean Coefficient Δ Patent Δ Investment dollar per Patent
# patents 19.94
log R&D 3.14 0.66 1.32 2.31 1.76
log Spillover Venture 4.08 0.11 0.22 5.91 26.97
log Spillover Est. 9.64 0.19 0.38 1536.73 4056.21

Table 8: venture capital: A 10% increase at the mean delivers...

Mean Coefficient Δ Patent Δ Investment dollar per Patent
# patents 1.53
log VC 1.79 0.21 0.42 0.60 1.43
log Spillover Venture 5.33 0.23 0.46 20.64 45.01
log Spillover Est. 9.81 0.45 0.90 1821.50 2023.98

are much more effective with 27 million dollar per patent compared to 4 Billion dollar per

patent for spillovers from established companies. Similarly, for venture capital backed

companies to create one additional patent, established companies must increase their

R&D by 2 billion dollar while venture capital backed companies must increase their

spending by just 45 million dollar. In sum, research from venture capital financed

companies appears to be similarly effective as research from established companies while

their spillovers are much more effective than corporate R&D.

A similar pattern emerges, if we calculate the effect with a complete counterfactual

simulation. To do this, we compute for every company separately what would happen

if we increase the R&D stock (VC stock) for all years by one million dollar. This is

different to the 10% increase before, but to be able to properly interpret the resulting

statistics it is convenient to hold the variation in investment fixed. Increasing the capital

stock for one company potentially increases the spillover term for all other companies,

so we re-compute the increase in spillovers for all companies and all type of spillovers. In

a next step we multiply the increase in spillovers with the corresponding coefficients to
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calculate the percentage increase in patents induced by the spillovers. Then we evaluate

the percentage increase at the average predicted number of patents for each company.

Summing up all these contributions by company-year, results in the distribution sum-

marized in Table 9 for established companies and in Table 10 for venture capital backed

companies.3

Again, the effects of spillovers from classical R&D is smaller than for an increase in

venture capital stock: In total, a one million dollar increase in R&D results in 0.007

patents for other companies (142 million dollar per patent), while the same increase in

venture capital results in 0.35 patents (2.85 million dollar per patent). Rather surpris-

ingly the much larger effect of venture capital is predominantely caused by its impact on

patenting of established companies. Taking firm heterogeneity in account, the private

gain from investing in R&D is stronger than for investing in venture capital: One million

dollar more R&D results in 0.200 patents (5 million dollar per patent) while a patent

from venture capital costs about 12.5 million dollar. Taken together, venture capital

seems privately a bit less profitable in terms of patent production than classical R&D,

yet the spillover originating from these companies are much larger.

4.3. Robustness: splitting the sample

In this section, we estimate specification of Table 6 in the sample before 1999 for the

five largest industries. In Figure 2 we then plot the coefficient for the venture capital

spillovers in the upper panel for established companies and in the lower panel for venture

capital backed companies. The overall pattern in these two pictures is clear: spillovers

from venture capital are strong for pharma, medical appliances and software, while they

are non-existent or even negative for electronics and the computer industry. In all cases

the estimates are rather imprecise, so establishing a difference within these groups is not

3We windsorize the predicted number of patents at the 99% percentile.
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Table 9: Established Companies: dollar 1 million more (cum.) R&D results in
mean sd min max p10 p90

Patents for VC companies 0.003 0.003 0.000 0.014 0.000 0.006
Patents for Est. companies 0.004 0.003 0.000 0.015 0.001 0.008
Total External Effect 0.007 0.005 0.000 0.026 0.002 0.014
Patents for own company 0.200 0.308 0.000 2.749 0.023 0.461
Total Effect 0.207 0.309 0.001 2.755 0.030 0.468
Observations 17910

Table 10: venture capital: dollar 1 million more (cum.) venture capital results in
mean sd min max p10 p90

Patents for VC companies 0.10 0.07 0.00 0.33 0.02 0.20
Patents for Est. companies 0.25 0.17 0.00 1.10 0.07 0.51
Total External Effect 0.35 0.22 0.01 1.23 0.12 0.68
Patents for own company 0.08 0.11 0.00 0.84 0.01 0.18
Total Effect 0.42 0.27 0.01 1.67 0.14 0.80
Observations 8975

possible.

5. Conclusion

In this paper we measure the spillovers from venture capital and R&D and compare

their relative quantitative importance for patent production. We find that spillovers

from venture capital are much stronger than spillovers from R&D: Back of the envelope

calculation suggests that around 142 million dollar in additional R&D spending of es-

tablished companies results in an external effect of one patent. To get the same effect

with venture capital an increase of only 3 million dollar is necessary. In contrast R&D

is much more privately profitable: One patent created through traditional R&D costs

around 5 million while a venture capital backed company needs 2.5 times the sum in

venture capital.

This paper is still very much in its infancy and there are at least three areas which
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Figure 2: Industry: Spillover from venture capital on
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(a) patents of established companies
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(b) patents of venture capital backed companies

require significant further work: First, it is not satisfactory that we do not understand

what drives the spillovers. For example if spillover are caused by scientists changing
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companies, we should include the flow of scientists in our regression. Second, the large

underlying heterogeneity in the firm population makes the quantitative magnitude of

the results appear fragile. Here we should either control for more variable or restrict our

subsample to one particular industry. Thirdly, the run-up in venture capital investment

during the dot-com bubble significantly changed the economics of venture capital and

the resulting spillovers. It would be interesting what drives this change and how one

can account for it in the main regression.
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A. First Stage Regression

Table 11 shows first stage regressions of our instruments on R&D and venture capital in-

vestment. Table 12 reports the regression of the predicted spillovers, our instruments, on

the actual spillovers. The residuals from these regressions are used as control functions.

TO BE COMPLETED

Table 11: First Stage Regressions
(1) (2) (3) (4) (5) (6)
VC VC VC Ln(R&D+1) Ln(R&D+1) Ln(R&D+1)

Lagged raised funds 0.08∗∗∗ 0.04∗∗∗ 0.05∗∗∗
(0.01) (0.01) (0.01)

Ln(R&D user cost_i,t) -3.24∗∗∗ -2.92∗∗ -3.30∗∗∗
(0.27) (1.32) (0.72)

F-Value 32.9 16.99 12.82 148.81 4.87 21.08
Year Fixed Effect No Yes Yes No Yes Yes
Firm Fixed Effect No No Yes No No Yes
R-square
Number of Observations 35502 35502 35502 19994 19994 19994

Table 12: Calculation of Control Function
(1) (2) (3) (4) (5) (6)

Spill VC Spill Est Spill VC Spill Est R&D VC
pred. log Spillover Est. -0.05 0.05∗∗∗ 0.02 0.00 0.20∗ -0.09

(0.11) (0.02) (0.05) (0.01) (0.11) (0.12)
pred. log Spillover Est. 6.97∗∗∗ 3.39∗∗∗ 4.77∗∗∗ 2.38∗∗∗ 4.44∗∗∗ 12.80∗∗∗

(0.89) (0.24) (0.61) (0.21) (0.78) (1.60)
pred. log VC -0.00∗∗∗ 0.00 0.00

(0.00) (0.00) (0.00)
pred. log R&D -0.28 0.04 1.43∗∗∗

(0.20) (0.07) (0.34)
F-Value 22.51 97.2 26.12 44.24 11.48 36.63
Year Fixed Effect Yes Yes Yes Yes Yes Yes
Firm Fixed Effect Yes Yes Yes Yes Yes Yes
R-square
Number of Observations 23861 23861 49471 49541 24084 21391

27



B. Details of Size of Effect Calculation

TO BE COMPLETED

C. Functional Form Identification

In the main part of the paper we already used two different identification methods:

Proxy variables and instrumental variables. In this appendix we discuss a third method:

Identification by functional form. In the following we assume that the patent production

function is literally of the Cobb-Douglas form described in Equation 1. This form of iden-

tification was first explored by Kortum and Lerner [2000] to estimate the productivity

of venture capital in US on the industry level.

The idea is, that by suitable standardizing the patent production function on the

industry level, we can eliminate technological progress from the estimation equation.

Kortum and Lerner [2000] standardizes the patent production function with R&D expen-

diture while we standardize the patent production function of venture capital financed

companies with the patent production function of established companies.

TO BE COMPLETED
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