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Abstract

This paper considers pricing by a monopoly platform to two group of customers—buyers

and sellers, over two periods when the subscription decision of the buyers is durable. That

is, buyers can continue to enjoy their subscriptions in period two at no cost. Based on a

stylized model of preferences, I derive general pricing rules which characterize optimal prices

in first and second periods. I then further specify the model to show that the second period

buyer prices decrease in the installed base of buyers in the first period, while the seller prices

increase. In comparison to a rental policy, buyers will pay less and sellers more in the second

period. In the first period the Coasian dynamics on the buyer side suggest that buyers obtain

a discount, but in combination with other effects in the model buyers may end up paying

more relative to the rental benchmark when sellers value buyers significantly. Similarly,

sellers pay a lower price in the first period when they value buyers more, and a higher price

otherwise. In the first period less buyers and sellers join the platform. I show that under

durability the platform earns lower profits when compared with the rental benchmark. I

demonstrate that while one side may be subsidized under the rental policy, platform may

optimally offer no subsidies under durability. On the other hand, while under durability one

side is subsidized, optimal rental prices may imply no subsidies. Overall the main insight

from literature on platform pricing in two sided markets which suggest that consumers which

value the number of consumers on the other side pays a higher price may no longer hold

under durability.
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Introduction

Since the seminal contributions of Rochet and Tirole (2002, 2003), a very large literature which

studies the price structure that may arise in the so called platform or two-sided sided markets

emerged. A platform facilitates interactions between two groups of users which otherwise would

not be able to interact. Therefore, the services or product offered by a platform generates value.

Owner of a platform will attempt to appropriate some of this value by setting participation prices

to the two different groups of users in order maximize platform profits. When the members of

the two different groups value the number of members of the other group, the platform is said to

exhibit cross group externalities. When these externalities are important, the pricing problem

of a platform may become rather complex and as a result rather interesting.

This framework has been used to analyze many different industries from credit card networks,

media markets, hardware-software platforms such as game consoles and computer operating

system, search engines, social networks, and online trading platforms to give a few examples.

Although each of these different markets have their idiosyncratic features, the main insights

generated by the two sided market models have been found convincing in explaining observed

pricing patterns by academics and practitioners alike. Although I will briefly summarize the

literature below, it is important highlight one issue here already:The literature relies on a static

model. To the best of my knowledge, dynamic issues that may arise in platform markets have

been largely ignored up to now. My goal in this paper make a first attempt to introduce dynamics

in the optimal pricing problem of a platform.

Consider for example the market for game consoles. Naturally, a game console for which

there are a large selection of available games will be more attractive. On the other hand, a

game console which is expected to be adopted by a large number of gamers will be attractive

for able game programmers. Thus, it is natural that there are cross group network effects. This

market which is rather vibrant and dynamic tends to have a number of firms which dominated

the market at one time or another, such as Nintento, Playstation and Xbox. The game consoles

are not compatible with one another and hence they have their own network of gamers and

game programmers. It is well known that game consoles are sold for below cost prices while

game developers tend to pay a large share of their earning as royalties to the producer of the

game console. Games are interesting products as after a limited number of times of play, a game

will cease to provide value to a gamer. Thus, for the duration a gamer owns a console there

will be several generations of games present in the market. As a result, when a gamer considers

purchasing a console, she would know that she would use that console for a considerable period

of time. In a sense, the decision to purchase a console is durable. This fact not only implies

that the gamer needs to form expectations regarding the supply of games in the future, but also

should also form expectations about how the producer of the game console would alter prices

in the near future. On the other hand, a game programmer presumably can consider whether
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to make a newly developed game available for a particular console or not. The decisions of

game developers are rather short term while the purchase decisions of the gamers are long

term—durable, decisions. Although the immediate impact of durability will result in familiar

discounts to the consumers buying game consoles, the overall effects on the price structure is not

immediately apparent as there are large number of moving parts in a two sided market model.

In this paper, I will take a first step towards incorporating durability of decisions of one of

the groups. In doing so I will adopt a very stylized model. For ease of exposition, I refer to

one group as buyers and the other as sellers. I do not explicitly model the interaction between

the two groups as in Hagiu (2009) but adopt reduced form benefit functions for buyers and

sellers which account for cross group network effects, prices paid for subscriptions as well as an

idiosyncratic component which generates heterogeneity within each group. Thus, I have elastic

subscription demands on both sides.

I assume that the platform exists for two periods, and all buyers and sellers are present for

both periods. The sellers have to make a subscription decision each period. In contrast, buyers

which decide to subscribe in period one, can continue enjoy their subscription in the second

period at no additional cost. In the second period, by charging a different price, the platform

may be able to attract additional buyers. In summary, I assume buyer decisions are durable,

while seller decisions are not. I assume that in each period the platform prices are announced

first, then buyers and sellers form rational expectations for relevant magnitudes and then make

purchase decisions.

I first assume general concave network benefit functions, general distributions for idiosyn-

cratic components of buyer and seller utilities and derive pricing rules for the second period

when a number of buyers have already purchased subscriptions in the first period. The presence

of an installed base on the buyer side have a few notable effects on the pricing rules. First, the

buyer subscription demand becomes more elastic, as the buyers left in the second period have

low idiosyncratic valuations of the platform’s services. Second, since the marginal increase in

the willingness to pay of a seller is lower when there are more buyers, the deviation of the actual

and perceived marginal cost on the buyer side is smaller. The third effect is on the seller side.

The increase in marginal willingness to pay of a buyer reduces perceived marginal cost on the

seller side. However, since this potential increase in price will be collected from a presumably

smaller number of buyers, the cost reduction on the seller side is smaller. Although, I do not

explicitly investigate in this more general framework, I conjecture that the second period buyer

prices will decrease as the number of buyers which join the platform in the first period increases.

I then look at the pricing decision in the first period. In this framework, a buyer can

purchase a subscription and enjoy it for two periods, or forego a purchase in the first period

and subscribe to the platform in the second period only. If second period prices are expected

to fall substantially, it may be wiser for some buyers to wait. This option to buy only in the

second period is the reason why Coasian dynamics may arise in my model as well. By selling
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to more buyers in the first period, the platform will charge lower prices to buyers in the second

period. Rational consumers forecast this behavior, and demand lower prices in the first period

to participate. Thus, the platform in the first period is in competition with itself in the second

period. In this setting, I derive optimal pricing rules in the first period. Although the seller side

pricing rule resembles the standard one,1 the pricing rule on the buyer side have two additional

components. If the platform sells to a buyer in period one, it cannot sell to that buyer in period

two. This lost profit discounted to period one appears as a cost for the buyer side. Although

bringing on board an additional buyer reduces prices for everyone (the effect of which is taken in

to account in the elasticity term), the existing buyers require an additional discount to remain

on board. The reason is as follows. An additional buyer in period one reduces second period

prices, and as a result increases the value of the outside option of each existing buyer. To keep

each of them as well off, the platform should reduce the prices to offset the increase in the outside

option. This additional effect also appears as a cost on the buyer side. The buyer price then is

determined when the Lerner index computed with the marginal costs adjusted taking dynamic

and network effects into account is equal to the inverse subscription elasticity of buyers.

Although the pricing principles I derive are illuminating, they unfortunately do not permit

me to make sharper statements regarding the potential effects of durability on price structure and

participation. Thus, I assume uniform distributions for idiosyncratic buyer and seller valuations

of platform’s services, and linear network benefit functions and derive dynamically optimal

platform prices under durability. The specific model verifies my conjecture regarding the the

optimal prices in the second period which decrease with the size of the installed base on the buyer

side. In contrast, seller prices increase. I derive conditions necessary for additional buyers to

always join in the second period facing the optimal prices. I then compare these optimal prices,

to the prices which would emerge if the platform could enforce all buyers to make subscription

decisions valid only for a single period—a policy I refer to as the rental policy due to its obvious

link to the durable goods monopoly literature. The optimal rental prices coincide with prices that

would emerge in the static version of my model. Depending on the strengths of network effects,

more or less buyers or sellers may join in the second period relative to the rental benchmark.

I then move to the first period. Taking the outside option of the consumers which depend

on the second period prices (which themselves depend on the outcome of the first period buyer

subscription demands), I derive rational expectations demand function for buyers and sellers.

I show that both demand functions shift downward but also become less price sensitive. For

most of the permissible parameters, buyers face a lower price. However, I show that there are

parameter combinations for which buyers in the first period under durability may pay a price

that exceeds the price they would have paid if they rented over two periods. The sellers pay more

relative to the rental benchmark if buyers value them more–a rather counterintuitive finding.

I find that both the number of sellers and buyers joining the platform under durability in the

1See, for example, Armstrong (2006)
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first period would be less than the rental benchmark. I then compare the profits of the rental

policy and the profits that would arise under durability and conclude that the rental policy

yields higher profits in this setting as well. I perform a few thought experiments by restricting

parameters in certain extreme ways. I demonstrate possible ways that durability can affect the

price structure in a fundamental fashion. Especially, I show that durability may alter when and

whether a side is subsidized or not.

The paper is organized as follows. In section 1, I present the related literature. Section

2 presents the model. In section 3, I derive general pricing rules for first and second periods.

I study a fully specified linear model in section 4, and derive optimal platform prices in both

periods. Here, I also present a detailed comparison of prices under durability and the rental

policy. Section 5 concludes.

1 Related Literature

Two sided markets have spurred a large interest in industrial organization starting with the

seminal contributions of Rochet and Tirole (2002, 2003). The early literature and implications

of multisidedness have been studied in Armstrong (2006) by using a series of stylized models,

which assume reduced form payoffs for both groups that depend on prices and network benefits

and derives pricing rules, among other market structures, for a monopoly platform. These

pricing rules imply that the externalities generated by an additional user on one side result in

an increase in willingness to pay of the users on the other side. This additional profit opportunity

reduces the perceived marginal cost of the platform owner for the additional user in question,

which in turn pushes optimal prices down. For prices to be optimal, it must be that the Lerner

Index based on the marginal cost adjusted by taking in to account this externality is equal to the

inverse of the subscription elasticity of the users. The main insight of these pricing rules is that

the group which values the number of users on the other side will pay a higher price to enjoy the

services of the platform.2 One goal I have in this paper is to put this main insight in question,

and show that it may fail to hold when contract durations on both sides differ rendering the

decisions of one group of user more durable.

Variations of the this simple setting do not change this main insight and similar pricing rules

arise in other models of platforms. For example, Hagiu (2009) makes the interaction between two

groups explicit and assume there exists a trade between them. In his treatment, one side consists

of the consumers and the other side comprises of the firms. These two groups find profitable

trade opportunities only when they participate in the platform. In Hagiu (2009), the valuation

of the number of sellers by consumers arise as a result of the love of variety consumer preferences

2Even in the stylized world of Armstrong (2006) the model can generate a wide range of pricing structures de-

pending on the strengths of various forces. The insight that “the side which values the other side more pays more‘”

is rather widely mentioned, however, it should be noted that this statement is true only when the subscription

elasticities on both side are of similar magnitudes.
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exhibit. For the sellers, the number of consumers participating in the platform naturally affects

the demand they face and creates a positive externality. The formulation in Hagiu (2009) allows

even for a negative externality on the side of the sellers, as the larger is the number of sellers,

the fiercer would be the competition between them and consequently per consumer profits they

would obtain would decrease. In addition to the strength of cross group network effects and

subscription elasticities, the findings of Hagiu (2009) imply that how the surplus of a trade

between a seller and consumer is shared and the love of variety consumer preferences exhibit

will have an effect on the optimal price structure of a platform. In Hagiu (2009), the reason why

game consoles are subsidized but games developers pay producers of consoles significant sums in

royalties is explained by the facts that the consumers love variety and the considerable market

power this awards the game developers which then can appropriate large share of the surplus

generated in a trade. In contrast, computer application software is relatively homogeneous and

hence software developers pay very little if at all to operating systems developers while consumers

pay significant sums for the operating system. The model I study in this paper advances another

possible explanation. It may very well be that the durability of software for game consoles are

significantly lower than that of computer applications. If you play a game a number of times

you may want to have new games, while you can use a word processing programs for many years

without a desire to upgrade.

Rochet and Tirole (2006) and Rhysman (2009) present excellent surveys summarizing not

only the results found in the academic literature but also characterizing which real world markets

fit the two sided markets—or more generally, multi-sided platform markets, framework. My main

contribution in this paper is to examine a previously ignored possibility which may affect the

price structure in a platform market in a considerable fashion: durability of the decisions. I show

that when one takes durability into account main insights regarding the optimal price structure

of a monopoly platform may be turned upside down. While a static or non-durable standard

platform monopolist subsidizes one side in order to maximize profits by earning handsome sums

on the other side, a platform monopolist whose subscriptions on one side is durable, may not

engage in subsidies at all. On the other hand, when the standard models suggest that there

would be no subsidies, a platform monopolist who takes into account durability of decisions on

one side may offer subsidies to the durable side. In general, I show that the durable side will

most likely obtain a discount, which in turn may imply that even though under a static model

this side needs to pay more, under durability it may end up paying less.

My paper is also closely related to the large literature on pricing of durable goods monopo-

lists. This literature mainly attempts to identify conditions under which the famous conjecture

presented in Coase (1972) holds. To rephrase, Coase (1972) conjectures that when the duration

between two consecutive sales of a durable goods monopolist goes to zero, the initial price the

monopolist would set will be equal to the highest of the willingness to pay of the lowest valu-

ation consumer and his own marginal cost. A number of papers, starting with Stokey (1981)
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show this conjecture to hold. Bond and Samuleson (1984) incorporate depreciation in a model

similar to Stokey (1981) and demonstrate that the conjecture will constitute a subgame perfect

equilibrium. Karp (1996) later generalizes this result and show that a continuum of subgame

perfect equilibria may arise when depreciation is taken in to account. Gul, Sonnenschein and

Wilson (1986) study a discrete time version of the problem and establish that all consumers that

value the good higher or equal to the monopolist’s marginal cost will be served in a finite time

in the subgame perfect equilibrium outcome. By allowing history dependent price expectations

on the consumer side Ausubel and Deneckere (1989) provide a folk theorem which suggests that

any profit level between the competitive outcome and the monopoly outcome can be supported

in equilibrium. Waldman (2003), an excellent survey of literature on durable goods, presents

an interesting critical view of this literature. There are a number of papers that attempt to

make the basic model more realistic by incorporating inflow of new consumers such as Sobel

(1991) who finds that although the folk theorem like results of Ausubel and Denecekere (1989)

apply in this setting as well, restricting attention to stationary consumer strategies revive the

Coase Conjecture. McAffee and Wisemann (2008) demonstrate capacity constraints may result

in Coase conjecture to fail.

In an interesting contribution Deneckere and Liang (2008) show that depreciation in a dis-

crete time model with noninfinitesimal lengths between consecutive trades may essentially result

in three classes of equilibria. When depreciation rate is low, each period highest valuation con-

sumers will leave the market giving incentives to the monopolist the reduce prices. This incentive

in turn harms the firm and the Coase conjecture emerges as the unique equilibrium prediction

when the durable good depreciates very slowly. On the other extreme, when depreciation is

high, each period there will be sufficiently many high value consumers allowing the firm to

charge monopoly prices in equilibrium. For intermediate depreciation levels a multitude of equi-

libria may exist. Their model considers a demand function that consists of a finite number of

discrete levels and cannot deal with a continuum of types. However, they correctly identify

that continuous time models may yield spurious equilibria and hence suggest that for reliable

insights, a model which considers trades only at discrete time intervals should be preferred.

Mason (2000) studies pricing of a durable network good which exhibit one-sided network

effects in a continuous time dynamic model. In his model consumers obtain network benefits

proportional to the number users at the instant of their purchase forever. He shows that although

the firm exercises marginal cost pricing, the network reaches its ultimate size in a long period

of time. Laussel et al. (2013) presents another dynamic continuous time model with network

effects. In addition to network effects for the durable good, they also consider a complimentary

product which the monopolist can sell to those who already own the main good in an aftermarket.

This aftermarket good also exhibits network effects which depend on the installed base of the

durable good. They assume, in addition, that the consumers enjoy network benefits at each

time instant proportional to the size of the installed base at that instant. This change in the
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assumption regarding how network benefits are realized imply that when marginal cost exceeds

the lowest consumer valuation the Coase Conjecture applies. Their study of aftermarkets or

essentially sales by a monopolist of two complimentary products resemble a two sided market

setting. However, in their case network effects arise solely due to the installed base of the durable

good or in other words solely due to the number of users on one side.

Obviously a realistic model should take depreciation and inflow of new consumers into ac-

count. Both of these features are forces that might allow a monopolist to sustain higher prices.

Even though without depreciation continuous time dynamic models yield sensible results, with

depreciation they may result in a continuum of equilibria as presented in Karp (1996). However,

as argued by Denecekere and Liang (2008) many of these equilibria are likely to be spurious.

However, the framework of Denecekere and Liang (2006) is also not amenable to analysis with

continuous consumer types, let alone additional externalities which are the cornerstones of a two

sided market model. Given these issues, I opt for a simpler model mostly following the advise

of Waldmann (2003) which suggest that a two period model should suffice to demonstrate the

Coasian effects on pricing. Given the two period assumption, I also do not incorporate depre-

ciation or arrival of new consumers. These features are naturally desirable for deriving reliable

insights for real world markets. I hope to develop the current framework in these directions in

future work. Thus, I adopt a two period model where there are cross group network effects,

the decisions of one side is durable implying that if they subscribe in the first period, they will

be able to obtain benefits in the second period at no cost. The decisions of the other side is

assumed to be completely perishable in that they need to make subscription decisions on both

periods.

2 The Model

I will adopt a stylized model of a two sided monopoly platform. I will refer to one side as the

sellers and the other side as the buyers to simplify exposition. The platform in my model is a

bottleneck in that the buyers and sellers need to participate in the platform in order to interact

with one another. In this sense, platform offers a necessary service. As usual, the customers of

the platform on either side care about the participation levels of users on the other side, hence

there are cross group network effects. I will not explicitly model the interaction between the

buyers and sellers. Hence, I will allow the platform to set only participation fees.3

My point of departure from the earlier literature is the assumption that the participation

decision of the buyers are long term, while sellers will have to decide whether to participate

more frequently. I will consider the simplest possible setup to investigate the implications of

this difference in the duration of participation decisions and adopt a two period model. While

3Clearly, in many realistic situations the buyer and seller interact with one another, and as Hagiu (2009)

demonstrates the distribution of the surplus between the two plays an important role on shaping the platform’s

price structure. This extension is left for future research.
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sellers have to decide each period on whether to subscribe4 or not. On the other hand, those

buyers who subscribe in period one will be able to enjoy the services of the platform also in period

two at no additional charge. Furthermore, those buyers who have not subscribed in period one

will be able to reconsider in period two. I assume that the platform lacks instruments to commit

to a subscription fee for the buyers in the second period. Thus the well known commitment

problem as conjectured by Coase (1972) arises. The second period incarnation of the platform

presents a competitor to its first period incarnation. The buyers’ outside option in the first

period is to subscribe in the second period instead of not participating which by assumption

would yield zero net utility. This increase in the value of the outside option of buyers in the first

period then affects the pricing structure that the platform offers in the first period. Although

very stylized, I aim capture the potential effects durability may have on the pricing structure of

a platform with the help of this assumption.

The modelling of buyer and seller benefits follow closely the setup in Hagiu (2009). I will

first put forth a relatively general model which permits one to derive general pricing principles.

I will then further explore the characteristics of the optimal prices by means of commonly used

functional form assumptions. Within a period, buyers obtain a net utility depending on the

number of sellers expected to participate on the other side which is denoted by ñt
S, t = 1, 2.

Although I assume that buyers’ valuation of the size of the seller population is homogeneous,

buyers differ from one another on their intrinsic valuation of the platform’s services. If a buyer

decides to join the platform in period one, she does not need to make a decision in the second

period. On the other hand, a buyer which chose not to subscribe in period one, can join in

period 2. The net utility of a buyer i in period 2 facing a price p2B and expecting ñ2
S sellers to

join on the other side is given by

u2i (p
2
B, ñ

2
S) = αB − θiB + vB(ñ

2
S)− p2B. (1)

Here vB(·) with vB(0) = 0, v′B(·) > 0 and v′′B(·) ≤ 0 represents the network benefits buyers

obtain. αB denotes a fixed benefit buyers obtain by subscribing. The idiosyncratic value con-

sumer i attaches to participating in the platform is denoted by θiB. I assume that this intrinsic

value is distributed over an interval [0, LB ] with a continuous and twice differentiable cumulative

distribution function FB(θB) and the corresponding density function, fB(θB) . Furthermore, I

assume that LB is sufficiently large that the buyer with this intrinsic valuation will not subscribe

to the platform by paying a positive price even when all the sellers join. Thus, I focus on cases

where buyer demand will be elastic.

When the buyers consider whether to subscribe or not in the first period, they are forward

looking. They do take in to account the benefits they will obtain in the second period in case

they subscribe in period one. That is, they reach a decision which maximizes their cumulative

benefits. A buyer who has subscribed in period one can enjoy the services of the platform in

4I will use subscribe, purchase and participate interchangeably in the following.
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period two at no cost. If buyer i decides to subscribe in period one, over the two periods she

thus obtains

Ui(p
1
B , ñ

1
S , ñ

2
S) = αB − θiB + vB(ñ

1
S)− p1B + δ(αB − θiB + vB(ñ

2
S))

where 0 ≤ δ ≤ 1 denotes the discount factor of consumers (and firms). It is clear that in order to

evaluate this net benefit, a buyer will have to form expectations regarding the number of sellers

which join the platform in both periods, ñ1
S and ñ2

S. The alternative faced by the buyers in the

first period is to wait and purchase in period two. If the expected price in the second period is

sufficiently low, waiting may become a valuable option. Thus, a consumer decides to subscribe

in period one, only when Ui(p
1
B , ñ

1
S , ñ

2
S) ≥ u2i (p

2
B , ñ

2
S). It is clear from this comparison that the

pricing decision of the platform to buyers must be interrelated.

The sellers also differ from one another with regards to the intrinsic value they attach to

participating at the platform. The sellers also derive network benefits as a function of the number

of buyers, ñt
B, they expect to participate at the platform. These network benefits are described

by an increasing concave function vS(ñ
t
B), with vS(0) = 0, v′S(·) > 0 and v′′S(·) < 0. As mentioned

earlier, the sellers have to renew their subscription decision in each period. Furthermore, as will

become clear below, the participation decision of sellers have no dynamic implications, thus

seller j subscribes to the platform by paying a subscription fee of ptS in period t whenever her

net benefit

πt
j(p

t
s, ñ

t
B) = αS − θ

j
S + vS(ñ

t
B)− ptS (2)

exceeds zero—the benefit of not subscribing at all. In this net benefit expression, αS corresponds

to a fixed subscription benefit and θ
j
S represents the idiosyncratic valuation of seller j. I assume

that the idiosyncratic valuations of sellers are distributed over an interval [0, LS ] according to a

cumulative distribution function FS(θS) and a corresponding density function fS(θS).

The monopoly platform announces prices ptB and ptS in each period. I assume that the

platform has a constant marginal cost of serving a buyer given by cB and a constant marginal cost

of serving a seller that is given by cS . Buyers and sellers after observing the prices form rational

expectations regarding participation levels on the opposite side and make their subscription

choices. As will become clear below, if x buyers join the platform in the first period, the

platform, in most cases, will have an incentive to sell to further buyers in the second period

at a lower price. The second period prices turn out depend on the number of buyers who join

the platform in the first period, x. Thus, when choosing its first period prices, the monopoly

platform considers the effect of these prices on second period profits. I will assume that the

platform discounts the future with the discount rate δ as well.

Before proceeding with the analysis, I would like to point out an intriguing possibility. If

the sellers value the number of buyers more than the other way around, it is easy to think of

examples where buyers are subsidized. It may in fact be that the buyers receive a payment

to join, which in turn implies that the buyers are offered a price below marginal cost in the
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first period. Note that the standard mechanism Coase conjectured relies on prices that exceed

marginal costs. In case, the platform charges below cost prices to buyers in the first period,

inducing more buyers to join in the second period may require charging prices which are even

lower. In this case, the monopoly platform may not face a commitment problem at all. In a

possible equilibrium, the monopoly platform will sell to a certain amount of buyers in the first

period at a price below marginal cost as well as sellers and then leverage the buyer base carried

over from the first period in making sales to the sellers only in the second period. Although I

was able to construct specific examples where such an equilibrium arises, I have not succeeded

in a general formulation treating such a case. In the remainder of the paper, I will consider only

those cases, where at the optimal prices some buyers always join in period two.

3 Pricing Decisions

Before starting to discuss how a platform will set its prices when buyer decisions are durable, it

is useful to explore a benchmark policy which does not suffer from the Coasian dynamics. As

customary in the durable goods literature, the potential issues arising from durability can be

offset if the platform is simply renting or able to charge a per period subscription price to the

buyers. This requires an ability to limit the second period participation of a buyer which joins

the platform in the first period. Supposing that the platform has access to such a technology,

and imposing limitations are feasible, the buyers subscription decisions in the first period are

no longer affected by subscription prices in the future. In addition, all buyers need to make a

subscription decision in the second period regardless of their first period decisions. As a result,

buyers and sellers will make their subscription decisions in a myopic fashion in each period.

The resulting pricing rules corresponding to the model I presented above will be the same as

those derived in Armstrong (2006).5 The prices in both periods will be determined by the same

inverse elasticity rules which are given by

ptk − (ck − v′−k(n
t
k)n

t
−k)

ptk
=

1

ǫk(αk + vk(n
t
−k)− ptk)

with t = 1, 2 andk = B,S

with −k denoting the opposite side. The subscription elasticity ǫtk(·) is defined as in Hagiu

(2009) and given by

ǫtk(αk + vk(n
t
−k)− ptk) =

Fk(αk + vk(n
t
−k)− ptk)

ptkfk(αk + vk(n
t
−k)− ptk)

.

In calculating this elasticity the network sizes, nt
−k, are held constant.

These, by now standard, pricing rules suggest that the platform takes in to account the

potential increase of its profits from one side when an additional user is brought on board on

5I do not provide an explicit proof of this claim as the second period pricing rules which I derive below with

the number of buyers which join in period one set to zero replicate the expressions derived in Armstrong (2006).
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the other side. The additional user on side k, increases the network benefits of users on the

other side by v′−k(n
t
k). The platform can increase prices on side −k by exactly this amount and

keep the subscription level on side −k the same. These effects imply that when externalities

are positive, the perceived marginal costs of the platform on both sides are lower. The optimal

prices equate the Lerner index on each side computed with the perceived marginal costs to

subscription elasticity of users on that side.

The typical insight from these pricing rules is that the side which values the number of users

on the other side higher tends to receive a lower price offer.6 When the strength of externalities

on the two sides are significantly different, the side which is valued more can in fact receive a

price offer that is below cost. In the subsections below, I will investigate the first and second

period prices when the platform cannot impose rental prices on the buyers. I will demonstrate

that the basic insight which I just mentioned may fail to be true when durability is taken in to

account. That is, even though the platform may prefer to charge higher rental prices to buyers,

absent a rental technology, it may end up charging lower prices to buyers when buyers decisions

are durable.

3.1 Optimal Pricing Rules in the Second Period

Suppose that x buyers have joined the platform in the first period. Thus, the seller i in period

2 knows for sure that she will be able to interact with at least x buyers. In addition, given the

prices of the platform, further mB buyers may be expected join the platform in second period.

Thus, the network size of buyers the sellers use in evaluating their net benefit is ñ2
B = x+ m̃B.

Suppose given the prices of the platform, p2B and p2S , and the expected number of buyers that

join the platform ñ2
B , a seller with an intrinsic value θ̂S is indifferent between joining the platform

and staying out. Using (2), the value of θ̂S is given by θ̂S = αS + vS(x + m̃B)p
2
S . All those

sellers with θS ≥ θ̂S will join the platform. Facing a subscription fee of p2S and expecting mB

additional buyers to join the platform, the number of sellers which subscribe in period two is

given by d2S(p
2
S , x+ m̃B) = FS(αS + w(x+ m̃B)− p2S).

Let θ1B denote the intrinsic value of the marginal consumer that decided to subscribe in

period 1. That is x = FB(θ
1
B). If the platform will sell to further buyers, it will need to attract

buyers which have intrinsic values that are lower, or more formally, those buyers with θB > θ1B.

When ñ2
S sellers are expected to join and facing a subscription price of p2B, there will be a buyer

with an intrinsic value of θ̂B who is just indifferent between joining the platform in period two

or not. Note that as the second period is the last period, the outside option of an unsubscribed

buyer is remaining unattached to the platform and obtaining a benefit of zero. Using (1), it is

easy to verify θ̂B = αB+vB(ñ
2
S)−p2B. I implicitly assume here that θ̂B > θ1B. Thus, the number

6Of course, the subscription elasticities play an important role in determining the optimal prices. Therefore,

this main insight should be amended with the phrase “when subscription elasticities on both sides are similar”.
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of additional buyers which will join the platform in the second period is given by

mB(p
2
B , n

2
S, x) = FB(αB + v(ñ

2
S)− p2B)− FB(θ

1
B) = FB(αB + v(ñ

2
S)− p2B)− x

Rational expectations require that m̃B = mB(p
2
B , n

2
S , x) and ñ2

S = n2
S(p

2
B, n

2
S , x) and the

resulting demand functions need to simultaneously solve

mB(p
2
B , n

2
S , x) = FB(αB + vB(n

2
S(p

2
B , n

2
S , x))− p2B)− x. (3)

n2
S(p

2
B , n

2
S , x) = FS(αS + vS(x+mB(p

2
B, n

2
S , x))− p2S) (4)

Suppose n2
S(p

2
B , p

2
S , x) and mB(p

2
B, p

2
S , x) solve these two equations uniquely to describe the

rational expectations buyer and seller demand functions respectively.

Assuming that for relevant prices these demand functions imply positive demands from both

sides, the second period platform profits are simply given by

Π2
P (p

2
B , p

2
S , x) = (p2B − cB)mB(p

2
B , p

2
S , x) + (p2S − cS)n

2
S(p

2
B , p

2
S, x) (5)

The optimal second period prices maximize this profit function. Assuming that the first order

conditions characterize the optimal prices, they need to solve:

mB(p
2
B, p

2
S , x) + (p2B − cB)

∂mB(p
2
B , p

2
S , x)

∂p2B
+ (p2S − cS)

∂n2
S(p

2
B, p

2
S , x)

∂p2B
= 0 (6)

(p2B − cB)
∂mB(p

2
B , p

2
S , x)

∂p2S
+ n2

S(p
2
B , p

2
S , x) + (p2S − cS)

∂n2
S(p

2
B, p

2
S , x)

∂p2S
= 0 (7)

The required partial derivatives can be obtained via totally differentiating equations (3) and (4)

with respect to p2B and p2S and solving the resulting system of four equations. Substituting these

partial derivatives in equations (6) and (7), results in two pricing equations characterizing the

profit maximizing prices in period two as follows:7

p2B − (cB − v′S(x+m∗
B)n

2
S
∗
)

p2B
=

1

η2B(αB + vB(n2
S

∗
)− p2B)

− x

p2BfB(αB + vB(n2
S

∗
)− p2B)

(8)

p2S − (cS − v′B(n
2
S
∗
)m∗

B)

p2S
=

1

η2S(αS + vS(x+m∗
B)− p2S)

. (9)

where

ηi(z) =
Fi(z)

fi(z)p2i
, i = B,S

represents the subscription elasticity of buyers and sellers as defined in Hagiu (2009).

The elasticity rules presented in equation (8) and (9) seem similar to those presented in

Armstrong (2006) and Hagiu (2009) however there are a few important distinctions. First

note that when there are no buyers already on the platform at the start of period two, these

expressions coincide with those of Armstrong (2006). The markups on both sides are inversely

7I present the derivation of these expressions in the Appendix.
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related to the subscription elasticities. The pricing on each side also takes in to account the

additional profits generated on the other side by inducing one more user join. Namely, when a

new buyer joins, the network benefits of sellers increase by v′S(·), which then allows the platform

to increase the price to the sellers by the same amount without changing seller participation.

This gain aggregated over all the participating sellers is v′S(·)n2
S

∗
and the marginal cost the

platform incurs per buyer is reduced by this amount. When there is a positive customer base of

buyers, x, this reduces marginal network benefits generated on the seller side for an additional

user, which in turn implies a smaller gain which arises by attracting one more buyer. The likely

effect of this change is an increase in buyer prices as the perceived marginal cost of a buyer

increases. On the other hand, given x customers with higher idiosyncratic valuations on the

buyer side do not make subscription decisions in the second period, the remaining buyers have a

higher subscription elasticity, which in turn is a force toward lowering buyer prices. Finally, the

additional gain which arises by attracting one seller from the buyer side, v′B(n
2
S
∗
), is potentially

collected from a smaller number of trading buyers, m∗
B . All in all, it is not straightforward

to derive the overall effect on the pricing structure in the second period of a user base of size

x on the buyer side acquired in the first period. Below, in the context of a further stylized

specification, I will pin down the effect of x on both the buyer and seller prices. To preview

the results, which I conjecture would hold more generally, are such that the presence of a user

base on the buyer side yields a reduction of the second period buyer prices and an increase of

the seller prices. This reduction in buyer prices is the very reason that an option to wait until

second period arises for the buyers in the first period which in turn results in a framework where

the Coasian price dynamics may arise.

The optimal prices the platform sets in the second period, naturally, depend on the number

of buyers who have already subscribed in period one, x. The sales of the platform also then

depends on x. Thus, the second period platform profits can be written as a function of x after

substituting the optimal buyer and seller prices and the corresponding sales amounts in equation

(5). Namely what we have is Π̄2
P (x) = Π2

P (p
2
B(x), p

2
S(x), x). It is interesting to note here that

any effect the customer base x can have on this profit via its effect on the optimal buyer and

sellers prices, p2B(x) and p2S(x), respectively, are internalized by the platform.8 Therefore, the

only effect of x on second period profits arises due to its direct effect on sales. Namely, an

additional buyer attracted in the first stage reduces number of sales to buyers by one in the

second period. As a result we have

dΠ̄2
P (x)

dx
=

∂Π2
P (p

2
B(x), p

2
S(x), x)

∂x
= −(p2B

∗
(x)− cB)

since mB(p
2
B , p

2
S) = FB(αB + vB(n

2
S) − p2B) − x. This expression will play a significant role in

the next section when we derive the optimal pricing rules of the platform in the first period.

8This is so as
∂Π2

P
(p2

B
,p2

S
,x)

∂p2
B

= 0 and
∂Π2

P
(p2

B
,p2

S
,x)

∂p2
S

= 0 when prices are optimally selected.
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3.2 Optimal Pricing Rules in the First Period

In beginning of the first period, I assume that no buyer or seller is attached to the platform.

As a result, all buyers and sellers contemplate joining the platform. Although all the sellers

will get a chance to revise their decisions in the second period, those buyers which decide to

subscribe in period one, can enjoy the benefits of the platform at no additional cost in the second

period. Therefore buyer i, after observing the first period price offer of the platform, must form

expectations regarding not only about the number of sellers which will subscribe in period one,

but also the number of sellers which will participate in the second period in order evaluate the

net benefit of having a subscription in period 2. On the other hand, this buyer may opt for

waiting until period two to subscribe to the platform. Evaluating the benefit of this option

requires a buyer to also form an expectation regarding the second period subscription prices as

well. Formally, buyer i will only join the platform in period one when

αB − θiB + vB(ñ
1
S)− p1B + δ(αB − θiB + vB(ñ

2
S)) ≥ δ(αB − θiB + vB(ñ

2
S)− p2B)

or, equivalently, whenever

θiB ≤ αB + v(ñ1
S)− p1B + δp2B

as the benefits of a subscription in the second period is the same regardless of when subscription

takes place. However, a buyer subscribing in period two incurs an additional cost of p2B which

in turn appears with discount factor in the choice problem faced by a buyer in period one.

Given that the subscription price in the second period will depend on the number of buyers

subscribing in period one, ñ1
B , this introduces an intergroup externality between the buyers in

the first period. If the second period price, p2B(n
1
B), decreases with the size of subscriber base of

the platform in period one, which most likely is the case, there would be negative externalities

between the first period buyers. That is, when one more buyer decides to join in the first period,

all other buyers expect a higher utility from waiting until the second period and then joining the

platform. This negative externality in the buyer decisions is present in addition to the regular

positive externality that arises due to the number of sellers joining the platform.

Given the distribution of the idiosyncratic valuations of the buyers, we can calculate the

actual number of buyers who will join the platform facing a subscription price of p1B, and

holding expectations ñ1
S and ñ1

B as

n1
B(p

1
B , ñ

1
B, ñ

1
S) = FB(αB + v(ñ1

S)− p1B + δp2B(ñ
1
B)). (10)

The first period decision of sellers is much like their second period decision. Furthermore,

since the sellers would obtain exactly the same benefit in the second period regardless of their

first period decision, sellers need not engage in any dynamic considerations. Observing the seller

price in the first period, and expecting ñ1
B buyers to subscribe, seller j will join the platform

whenever

αS − θiS + vS(ñ
1
B)− p1S ≥ 0
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or equivalently whenever

θiS ≤ αS + vS(ñ
1
B)− p1S .

As a result, the actual number of sellers which would subscribe is simply given by

n1
S(p

1
B, n

1
B) = FS(αS + vS(ñ

1
B)− p1S). (11)

The buyers and sellers form rational expectations in the first period as well implying that

ñ1
B = n1

B(p
1
B , n

1
B(p

1
B , ñ

1
B , ñ

1
S), n

1
S(p

1
S, ñ

1
B)) = n1

B(p
1
B, p

1
S) and ñ1

S = n1
S(p

1
S, n

1
B(p

1
B , ñ

1
B, ñ

1
S)) =

n1
S(p

1
B , p

1
S). Given these rational expectations demands, the profit function of the platform in

the beginning of period one is

ΠP (p
1
B , p

1
S) = (p1B − cB)n

1
B(p

1
B, p

1
S) + (p1S − cS)n

1
S(p

1
B , p

1
S) + δΠ̄2

P (n
1
B(p

1
B , p

1
S)).

Thus, the platform takes in to account the effect of its pricing decision on the profits from the

second period. One again assuming that the first order conditions characterize the solution to

the profit maximization problem if the platform, the first period prices have to satisfy

n1
B(p

2
B , p

2
S) + (p1B − cB)

∂n1
B(p

1
B , p

1
S)

∂p1B
+ (p1S − cS)

∂n1
S(p

1
B , p

1
S)

∂p1B

−δ(p2B
∗
(n1

B)− cB)
∂n1

B(p
1
B , p

1
S)

∂p1B
= 0 (12)

(p1B − cB)
∂n1

B(p
1
B, p

1
S)

∂p1S
+ n1

S(p
1
B , p

1
S) + (p1S − cS)

∂n1
S(p

1
B , p

1
S)

∂p1S
= 0 (13)

where I use the fact that
dΠ̄2

P (x)
dx

= −(p2B
∗
(x)− cB) in equation (12).

In order to further characterize the optimal first period prices, I derive the necessary partial

derivatives of the demand functions using total derivation of equations (10) and (11) in the

appendix. Substituting these partial derivatives in (12) and (13) and simplifying yields two

elasticity rules that the first period prices have to satisfy which are given by

p1B − (cB + δ(p2B
∗
(n1

B

∗
)− cB)− v′S(n

1
B

∗
)n1

S

∗ − δρn1
B

∗
)

p1B
=

1

η1B(αB + vB(n1
S

∗
)− p1B + δp2B(n

1
B

∗
))
(14)

p1S − (cS − v′B(n
1
S
∗
)n1

B
∗
)

p1S
=

1

η1S(αS + vS(n1
B

∗
)− p2S)

(15)

where ρ denotes marginal change in the second period price when the number of buyers sub-

scribing in the first period slightly increases. Formally, ρ =
∂p2

B

∗
(x)

∂x
.

Although the seller side pricing rule given in equation (15) is exactly as the one found in

Armstrong (2006), since the buyer side pricing incentives change quite a bit, the optimal first

period price to sellers is likely to be substantially different. In addition to taking into account the

gains an additional buyer will bring on the seller side, the platform needs to take into account

a number of other effects. Each buyer who joins the platform in period one, will not need to

purchase in the second period, and hence results in a loss (viewed in the first period) equal to
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δ(p2B
∗
(n1

B

∗
) − cB). Moreover, an additional buyer in the first period results in a change in the

second period prices measured by ρ. This change in the second period prices changes the outside

option of all the buyers which consider to join the platform in the first period. In order to keep

the overall number of buyers subscribing constant, the platform needs to adjust its first period

with δρ. This results in a gain or loss from all the participating buyers which is given by δρn1
B

∗
.

As argued before, the most likely case is that the second period price will decrease when one

more buyer joins in the first period, i.e. ρ < 0. Thus bringing one more buyer on board implies

a perceived marginal cost that is adjusted downwards due to the potential gains from the seller

side in the first period, upwards due to the loss in profits from the second period and due to

additional compensation required by all the buyers to stay on board in the first period.

The first period price to the buyers can be thought of the sum of two prices, one for the

service for the first period and another component for the second period. Interpreted in this

fashion, the payment collected from first period buyers in the first period for the second period

service is equal to δp2B
∗
. The first period buyers and second period buyers pay the same price

for the service in the second period. However, the very fact that the platform cannot commit to

the second period prices implies that platform must offer an additional discount δρ to each of

the buyers in the first period to insure their participation. This discount lowers the first period

component. Given the increased subscription elasticity, the second period component is also

likely to lower be when compared with prices absent dynamic effects. As a result, the buyers

joining the platform in the first period are likely to pay a lower price.

These pricing rules unfortunately do not allow me to derive sharper results on the impact of

the durability of the buyers’ and sellers’ subscription decisions. In order to further investigate

the optimal prices, I adopt assumptions on the distribution of intrinsic values as well as the

shape of the network benefit function in the next section and derive optimal platform prices in

closed form.

4 A more stylized model

In this section, I assume that the intrinsic values of buyers and sellers are uniformly distributed.

Namely, fk(θk) = 1 for 0 ≤ θk ≤ Lk and k ∈ {B,S}. This implicitly assumes that the total

buyer (seller) population is given by LB(LS). Moreover, I assume that both buyers and sellers

enjoy network benefits which are proportional to the number of users on the other side. Namely,

I set vB(x) = wBx and vS(x) = wSx. These assumptions then suggest that for well-behaved

rational expectations demand we need Q2 = 1−wBwS > 0, or equivalently, it is necessary that

the product of the marginal network benefits of buyers and sellers be not too large. Furthermore,

given the linearity of implied demand functions, one can set marginal costs of serving buyers
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and sellers to zero without loss of generality.9

In subsection 4.1, I will derive the rational expectations demand in the second period and

the corresponding prices as a function of the number of buyers which subscribe in period one.

Subsequently, in subsection 4.2, I derive the first period rational expectations demands and

derive the subgame perfect platform prices. I then compare these to the benchmark prices

which would obtain under a rental (or per period subscription) policy.

4.1 The second period

The linearity of the cumulative distribution functions for θB and θS along with the linearity

of the network benefit functions greatly simplifies the calculation of the rational expectations

demand system. Namely, the rational expectations demand in period two satisfy,

mB(p
2
B, n

2
S , x) = αB + wBn

2
S(p

2
B , n

2
S , x)− p2B − x. (16)

n2
S(p

2
B, n

2
S , x) = αS + wS(x+mB(p

2
B , n

2
S , x))− p2S (17)

(18)

These two expressions implicitly assume that mB(p
2
B , n

2
S , x) > 0. If for some prices and x values

no buyers in the second period join, then the sellers demand is simply given by (17) when

mB(p
2
B , n

2
S , x) = 0. I will first focus on the case where some buyers are expected to join in a

rational expectations equilibrium given prices and x.

Let Q2 = 1−wBwS. Then, the second period rational expectations demand function for the

buyers is given by

mB(p
2
B , n

2
S , x) =

1

Q2

(

αB + αSwB − p2B − wBp
2
S

)

− x

and the rational expectations demand function for the sellers is

n2
S(p

2
B , n

2
S , x) =

1

Q2

(

αS + αBwS − p2S − wSp
2
B

)

.

The immediate effect of a customer base for the platform on the buyer side, x, is to reduce the

buyer side demand.10 As usual, the demands from both sides are complementary to one another.

An increase of a price on one side results in a decrease of subscriptions on both sides. When

price increases on one side, it results in a decline of subscriptions on that side. In addition,

the users on the other side rationally forecast the decline in the number of users where the

price increase occurs, and hence less of them end up subscribing as well. The second period

demands are well defined only when the product of marginal network benefits, wBwS , is not too

large. Although both of these marginal network benefits cannot be too large simultaneously,

9In a model with constant marginal costs cB and cS, setting αk to αk − ck and setting ptk to ptk − ck for

k ∈ {B,S} transforms the model to one with zero marginal costs on both sides.
10I, of course implicitly, assume in this formulation that at the relevant prices, there would be new buyers

subscribing to the platform so that mB(p
2
B, p

2
S, x) > 0.
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the formulation permits situations where network effects are extremely small on one side, and

large on the other. Nevertheless, I will refrain from placing further conditions on the parameters

at this point, as the optimal prices, as well as sensibility of first period demands place more

stringent restrictions.

In order to simplify exposition, define w = wB+wS

2 , τB = αB(1 − wSw) + αS(w − wS) and

τS = αS(1−wBw)+αB(w−wB). Given the demand functions derived above, solving the profit

maximization problem of the platform is straightforward and the resulting prices are given by

p2B
∗
(x) =

1

2(1− w2)

(

τB −Q2x
)

p2S
∗
(x) =

1

2(1− w2)

(

τs +Q2wx
)

.

At these prices, the corresponding sales of the platform to buyers and sellers are

mB
∗(x) =

1

2(1− w2)

(

αB + αSw − (1− wSw)x
)

(19)

n2
S

∗
(x) =

1

2(1− w2)

(

αS + αBw − (w − wS)x
)

. (20)

When there are no buyers carried over from the first period, i.e. whenever x = 0, the

corresponding prices and sales represent the outcome which would emerge if the platform were

able to rent or restrict subscriptions to a single period. That is pRB = p2B
∗
(0) and pRS = p2S

∗
(0)

as well as nR
B = mB

∗(0) and nR
S = n2

S
∗
(0). In this case, since αB +αSw > 0 and αS +αBw > 0,

for the demands to be positive it is necessary that w < 1 or equivalently wB + wS < 2. When

this condition is not satisfied, the platform will choose to sell to all customers at least on one

side. I will maintain this assumption in the following not to deal with such situations. Thus,

with this restriction there will always be some buyers and some sellers which do not participate

in the platform facing the optimal prices.

It is clear from (19), that for larger values of x and when (1 − wSw) is positive, there may

be no buyers joining the platform facing the optimal prices. This naturally will contradict with

the initial hypothesis that some buyers join. Namely, the solutions I derived are valid only when

1− wSw > 0 and

x ≤ αB + αSw

1− wSw
= xCR.

In case, 1 − wSw > 0 but x > xCR, then the platform will optimally not make any sales to

buyers in the second period. In this case the seller demand only depends on x and p2S and is

given by n̂2
S = αS + wSx− p2S and the second period profit of the platform is maximized when

p2S
o
= 1

2(αS + wSx), and the corresponding platform profits is given by Π2
P
o
= 1

4(αS + wSx)
2.

To implement such an outcome the platform simply needs to set p2B
o
very high that no buyer

considers purchasing a subscription.

Whenever 1− wSw > 0, but wS > wB , we have w < wS and hence the equilibrium number

of sellers subscribing in the second period is always positive. On the other hand, whenever
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wB > wS , for large values x the expression in (20) can become negative. It turns out the critical

value of x which drive the seller demand at the optimal prices to zero exceeds xCR, the critical

value of x above which no buyer will join the platform in the second period. Hence, the relevant

condition on the x to keep track is whether it is smaller than xCR implying some buyers will

join in the second period, or whether the number of buyers which join in period one are so large,

i.e. x > xCR, that no new buyer joins in the second period, and the platform only sells to the

sellers in the second period. Below I will rule out this possibility, and consider those parameter

values where the sales to buyers at the optimal prices in the first period does not exceed xCR.

Whenever 1 − wSw < 0 new buyers will always join. This is the case whenever wS >

1
2 [
√

w2
B + 8 − wB ] = wcr

S . However, it turns out that 1 − wSw < 0 and 1 − w > 0 can only

be satisfied together whenever wB < 1. When wB < 1 and wS > wcr
S , however, we have that

wS > wB and hence the seller demand will always be positive. Therefore the model’s results

will also hold whenever 1− w > 0 and 1− wSw < 0.

A comparison of the optimal buyer price with the rental price charged to the buyers suggests

that when buyer decisions are durable, buyers will receive a discount with durability. That is,

since

p2B
∗
(x)− pRB = p2B

∗
(x)− p2B

∗
(0) = − Q2x

2(1− w2)
< 0,

the second period buyers receive a discount that grows with the size of the user base which

subscribe to the platform in period 1. As I will use it later on when I study the first period

optimal pricing problem, it is worthwhile to compute response of the buyer price to the number

of buyers which join in the first period. It is easy to verify that

ρ̂ =
∂p2B

∗
(x)

∂x
= − Q2

2(1− w2)
< 0.

Comparing the sales to buyers in the second period under the rental policy and durability,

namelym∗
B(x) andm∗

B(0), suggests that a smaller number of buyers will purchase with durability

whenever 1−wSw > 0. This would be not surprising as the high value buyers leave the market

in period one, platform may find to attract less of the low value buyers in the second period.

Indeed, when sufficiently many buyers purchased subscriptions in period one, namely xCR, the

platform will attract no new buyers. What is surprising however is when the marginal network

benefits of the sellers exceeds wcr
S , it may be that more buyers may join the platform with

durability if sellers value buyers sufficiently strongly. Note that in this case the sellers will have

access to a buyer population of size x+m∗
B(x).

The sellers on the other hand end up paying a larger price when the decisions of x buyers

which join the platform in period one is durable. It is easy to verify that

p2S
∗
(x)− pRS = p2S

∗
(x)− p2S

∗
(0) =

Q2wx

2(1− w2)
> 0.

Similarly evaluating

n2
S

∗
(x)− nR

S = n2
S

∗
(x)− n2

S

∗
(0) = −(w − wS)x

2(1− w2)
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reveals that although they face a higher price, more sellers might join whenever average marginal

network benefits w is less than the marginal network benefits of sellers. This is possible only

when sellers value buyers more. Otherwise, the number of sellers participating in the second

period would be below the rental benchmark. I summarize these findings in the next proposition.

Proposition 1 Whenever w < 1, Q2 > 0 and x > 0 buyers joined the platform in period one,

the platform charges a higher price to sellers and a lower price to buyers in the second period.

For sufficiently small values of the marginal network benefits of sellers, namely, for wS ≤ wcr
S ,

a smaller number of additional buyers join the platform relative to the rental benchmark. In

fact, when wS ≤ wcr
S but x > xCR no new buyers will join in the second period. In this case,

the platform sells only to the sellers. On the other hand, whenever wS > wcr
S , a larger number

of additional buyers will join. Whenever wS ≤ wB, a smaller number of sellers join in the

second period relative to the rental benchmark, while whenever wS > wB more sellers will join.

Surprisingly, for wS > wCR
S and wB < 1, more sellers and buyers join in the second period

relative to the rental benchmark.

Proof. See the preceding arguments.

4.2 The first period

I now proceed to the analysis of the first period. In the first period, the platform announces prices

and subsequently buyers and sellers form the necessary expectations to reach their subscription

decisions. I will proceed with the assumption that in the second period some buyers will join the

platform. This implicitly assumes that the platform attracts a buyer population that is not too

large that the second period buyer demand is driven to zero. Namely, even when 1−wSw > 0,

x < xCR in period two. I will later verify when this assumption indeed holds.

Sellers’ problem is relatively straightforward. Given p1S and an expectation regarding the

number of buyers that would join the platform, ñ1
B, they make their subscription decisions.

Since the distribution of the intrinsic values of the sellers θS is uniform, the actual number of

sellers that would join the platform under these conditions is given by

n1
S(p

1
S , ñ

1
B) = αS + wSñ

1
B − p1S.

On the other hand, buyers take into account the possibility of waiting and purchasing in the

second period. This requires them to take into account the future subscription price which

turns out to be a function of the number of buyers which participate in period one. Thus they

also need to form an expectation about the contemporaneous participation on the buyers’ side.

Given the uniformly distributed θB , translating equation (10), implies that actual number of

buyers subscribing to the platform facing a price of p1B and holding expectations ñ1
B and ñ1

S is

given by

n1
B(p

1
B, ñ

1
B , ñ

1
S) = αB + wBñ

1
S − p1B +

δ

2(1− w2)

(

τB −Q2ñ
1
B

)

.
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Once again rational expectations require, ñ1
B = n1

B(p
1
B , n

1
B(p

1
B, ñ

1
B , ñ

1
S), n

1
S(p

1
S , ñ

1
B)) and

ñ1
S = n1

S(p
1
S , n

1
B(p

1
B, ñ

1
B , ñ

1
S)). Define Q1 =

(

2(1 − w2) + δ)Q2. The solution of these two

equations for ñ1
B and ñ1

S yields the rational expectations demands in period one which are given

by

n1
B(p

1
B , p

1
S) =

1

Q1

(

2(1− w2)(αB + wBαS) + δτb − 2(1− w2)(p1B +wBp
1
S)

)

(21)

n1
S(p

1
B , p

1
S) =

1

Q1

(

2(1− w2)(αB + wBαS) + δwSτb + δαSQ2

−2(1 −w2)(wSp
1
B + p1S)− δQ2p

1
S

)

(22)

Relative to the demand that would arise on the buyer side, under durability buyer demand

is less price sensitive with respect to both prices as

2(1− w2)

Q1
− 1

Q2
= − δ

Q2(2(1 −w2) + δ)
< 0.

This is to be expected as a price decrease in the first period will induce more buyers to join.

However, the more buyers join in the first period, the lower would be the second period price

and hence the outside option of the buyers becomes more valuable. Under the rental policy,

a price cut has no impact on the outside option of buyers. Thus the buyers become less price

sensitive in period one. The demand function from buyers in the first period also shifts down

since

1

Q1

(

2(1− w2)(αB + wBαS) + δτb

)

− 1

Q2

(

αB + swB

)

= −δw(αBwS + αS)

Q1
< 0.

The impact of durability of buyer decisions on the demand from sellers seems to be more elab-

orate. The demand of the sellers also shift down as

1

Q1

(

2(1−w2)(αB +wBαS) + δwSτb + δαSQ2

)

− 1

Q2

(

αS + bwS

)

= −δwwS(αBwS + αS)

Q1
< 0.

The seller demand becomes less responsive to the buyer price for the same reason as buyer

demand becomes less price sensitive. It turns out that although there is an additional effect on

the seller side of the seller price, overall the seller demand is less price sensitive to the seller

price relative to the demand that would arise under rental policy since

2(1− w2) + δQ2

Q1
− 1

Q2
= −δ(1 −Q2)

Q1
< 0.

As both demands shift down but become less price sensitive the effects on the prices will be

ambiguous.

Given the rational expectations demands, the platform maximizes the discounted sum of

its profits in periods one and two. In computing the expected profits from period 2, the plat-

form evaluates the second period profit Π2
P

∗
(x) = Π2

P (p
2
B

∗
(x), p2S

∗
(x), x) with x = n1

B(p
1
B , p

1
S).

Namely, the platform maximizes that following profit function by choosing p1B and p1S :

ΠP = p1Bn
1
B(p

1
B , p

1
s) + p1Sn

1
S(p

1
B, p

1
s) + δΠ2

P

∗
(n1

B(p
1
B , p

1
s)).
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Define Q0 = 16(1 − w2)2 + 4δQ2. Solving the first order conditions in both first period prices,

it is easy to verify that the optimal first period prices are given by

p1B
∗

=
8(1 − w2)τB − 2δαSwSQ2

Q0
− δτB

2(1− w2)
(23)

p1S
∗

=
8(1 − w2)τS − 2δαSQ2

Q0
(24)

The corresponding demands from buyers and the sellers in the first period are given by

n1
B
∗

=
8(1− w2)(αb + αSw)

Q0
(25)

n1
S

∗
=

8(1− w2)(αS + αBw) + 2δαSQ2

Q0
(26)

For these equilibrium prices and corresponding sales values to be the optimal choices, it is needed

that the platform does not sell to too many buyers in the first period when 1 − wSw > 0. If

this were to be the case, then no additional buyers will join in the second period, and hence the

decision problem of the buyers will differ from the one I constructed above. As a consequence

the optimization problem faced by the platform will also be different. Thus, the results apply

only for those parameter values where n1
B

∗
< xCR whenever 1 − wSw > 0.11 For cases, where

1 − wSw ≤ 0, in the second period some buyers will always join, thus the first period decision

problems faced by the buyers and the platform are consistent with the underlying assumptions.

Thus, the first period prices I derive above apply in this case.

The seller prices in the rental strategy and under durability of buyer decisions are directly

comparable. Computing the difference, I obtain

p1S
∗ − pRS =

δQ2(αB + αSw)(wb − ws)

Q0(1−w2)
.

The seller prices with durability is higher (lower) when sellers value buyers less (more) relative

to the rental prices. The comparison between the price buyers pay under durability and under

rental strategy are not directly comparable. The buyers under durability pay a price and obtain

in return a subscription that is valid for two periods. Under the rental regime, the same buyers

will have to pay the platform in each period the rental price. Given that in the model the rental

prices remain constant over time, I compare p1B
∗
and (1+ δ)pRB . Computing the difference yields

p1B
∗ − (1 + δ)pRB = −δQ2(αb + αSw)(1 − wSw)

2Q0(1−w2)
.

Provided that 1−wSw > 0, the buyers pay a lower price in the first period relative to the rental

benchmark. This is to be expected, as the Coasian dynamics yield competition between the

incarnations of the platform in the two periods. However, if 1−wSw < 0 buyers end up paying

11There are parameter values for which 1−wSw > 0, w < 1, and the implied number of buyers who would join in

period one exceed xCR. Although the complete analysis of these cases are interesting, it requires a reformulation

of the first period decision problems. Thus, the pursuit of optimal prices in such cases are left for future research.
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more under durability. This is surprising. However, recall my model is valid in this situation

only when wS > wCR
S and wB < 1 implying wS > wB . For such parameters, whenever αB and

αS are not too different, the buyers obtain a subsidy with the rental policy. The increase in

the buyer price need not imply that buyers are not being subsidized. It may be that the size

of the subsidy becomes smaller. However, it is possible to find parameter values where buyers

may indeed end up paying positive prices. The implication is that the price structure may be

substantially altered when durability of the buyers’ decisions is taken in to account.

Comparing the sales to buyers in the first period under durability and with the rental policy

implies that under durability less buyers will join in the first period. Formally

nR
B − n1

B
∗
=

2δQ2(αB + αSw)

(1− w2)Q0
> 0.

A similar comparison on the seller side reveals that the number of sellers joining in the first

period will also be lower since

nR
S − n1

S

∗
=

2δwQ2(αB + αSw)

(1− w2)Q0
> 0.

Proposition 2 Assume w < 1 and wBwS < 1. Then, under durability sellers pay more relative

to the rental prices if wS < wB, and pay less whenever wS > wB. Buyers face a lower price

under durability relative to the rental benchmark provided that 1 − wSw > 0. If, on the other

hand, 1−wSw < 0 buyers face a higher price. Under durability the number of buyers and sellers

which subscribe in the first period is lower.

In order to better illustrate the changes in pricing which arise as a result of the durability of

buyers’ decisions, it is useful to investigate a few more specific cases. Consider first an extreme

setting where wB = 0. Assume furthermore that αB = αS = α. Under these conditions,

p̄RB = α(1−wS)
2−wS

and p̄RS = α
2−wS

> 0. Therefore, the buyers will receive a subsidy whenever

1 < wS < 2 under the rental policy. Under these parameter restrictions, n1
B
∗
< xCR whenever

1 − wSw > 0 as well. Therefore, the solutions provided above for the durability case are valid

for all 0 ≤ wS < 2. Furthermore, both p1B
∗
and p1S

∗
will be proportional to α similar to their

counterparts in the rental case. Since wS > wB = 0, sellers pay a lower price under durability

for all values of wS . A comparison of buyer prices however is interesting as it exhibits quite

some changes in the price structure. Figure 1 presents this comparison. As can be seen buyers

are subsidized whenever wS exceeds unity with the rental policy. But for all wS <
√
2, under

durability first period buyers pay less. This implies that for an interval of wS values, namely

for wS ∈ [0.918, 1] if δ = 1, buyers are subsidized under durability although they pay positive

prices with the rental policy.

A second exercise worth performing is the polar opposite case. Assume wS = 0 and continue

assuming that αB = αS = α. The rental prices in this case become p̄RB = α
2−wB

and p̄RS =
α(1−wB)
2−wB

. With wS = 0, we have always 1 − wSw = 1 > 0. If in addition δ is sufficiently close
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Figure 1: A comparison of buyer prices under durability and rental policies: wB = 0, δ = 1
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to unity, for all 0 < wB < 2, n1
B
∗
< xCR, therefore the prices derived above are valid. I have

already established that seller prices will be higher relative to the rental benchmark as sellers

value buyers less, i.e. wS = 0 < wB . But since 1−wSw > 0, buyers pay a lower price in the first

period. Note that under the rental policy the sellers will be subsidized whenever 1 ≤ wB < 2.

It turns out that under durability the sellers will be subsidized only when wB further increases.

In other words, there is a range of buyer marginal network effects, for which under rental policy

sellers are subsidized, and under durability they pay positive prices. Figure 2 presents seller

prices under durability and the rental policy when in addition to other parameter restriction δ

is set to unity as well. In this case for wB ∈ [1, 1.253], the sellers are subsidized under the rental

policy, while they pay a positive price under durability.

A third though experiment which is useful to consider is when wS = κ < 1 and wB = κ+ ǫ

where ǫ > 0 is a small number. I maintain the assumption that αB = αS = α. The validity of the

results require that wB+wS

2 = κ+ ǫ
2 < 1 which in turn implies 1−wBwS = 1− κ2 − κǫ > ǫ2

4 > 0

and 1 − wSw = 1 − κ2 − κǫ
2 > 0. Moreover, as ǫ goes to zero, for all κ < 1, we have that

n1
B
∗
< xCR. Therefore, the solution provided above are valid for values of κ. In this case, the

optimal rental policy entails charging the buyers a price slightly larger than the price faced by

the sellers. Formally, pRB = 1−κ
2(1−κ)+ǫ

and pRS = 1−κ−ǫ
2(1−κ)+ǫ

, so that pRB > pRS . I will compare the life

time payments of buyers and sellers which would subscribe the platform under both settings.
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Figure 2: A comparison of seller prices under durability and rental policies: wS = 0, δ = 1
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The prices are presented in Figure 3 when the discount factor is set to unity. As can be seen from

the figure, the pricing behavior may turn upside down if durability is taken into account. Under

the rental policy, buyers face higher prices relative to sellers as they value them slightly more.

Moreover, the as κ increases buyer price increases and the seller price decreases under the rental

policy. When durability is taken into account, the buyers end up receiving a large discount and

this discount increases with the value of κ. Thus overall buyers face a lower price when the

marginal network benefits κ increases. This in turn increases the willingness to pay from the

sellers in both periods. Hence, the sellers end up paying more under durability. Moreover, the

price they face increases as κ increases.

Up to now, I have used the rental policy as a benchmark without showing that indeed it is

the more profitable alternative. After deriving the optimal prices under durability, I now can

also formally investigate whether rental policy would provide a more profitable option for the

platform. Under the rental policy, the platform charges constant prices in both periods given

by p2k
∗
(0), for k ∈ {B,S}. As a result the number of buyers and sellers joining in each period

will also be the same. One can construct the total profits with the rental policy then as

ΠR
P = (1 + δ)

(

∑

k∈{B,S}

p2B
∗
(0)n2

B

∗
(0)

)

=
(1 + δ)(α2

B + α2
S + 2αBαSw)

4(1− w2)
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Figure 3: A comparison of seller prices under durability and rental policies: wS = κ, wB = κ+ǫ,

δ = 1 and ǫ = 0.01
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Using the optimal prices and sales values in both periods under durability, the cumulative profits

of the platform, Π∗
P , can be written after simplifications as

Π∗
P = ΠR

P − δQ2(αB + αSw)

(1− w2)Q0
.

Thus, the the rental policy yields always higher profits relative to the optimal outcome under

durability, as ΠR
P −Π∗

P > 0. This result formally establishes the rental policy as the appropriate

benchmark and I summarize it in the next proposition.

Proposition 3 Rental policy yields a higher cumulative profit when compared with the cumula-

tive profit the platform earns under durability.

5 Conclusion

In this paper I investigated the effects of durability of choices made by one group of consumers

on the price structure of a monopoly platform. The model is admittedly a stylized two period

model but directly comparable to the standard models used in the literature for studying two

sided markets in static settings. I show that durability introduces Coasian dynamics and as a

result it is likely that the users on the durable side pay low prices in the second period, and
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consequently the users on that side also receive discounts in the first period. I establish that the

platform may eliminate these problems by for example following a rental policy which restricts

subscriptions to a single period. The price structure that emerges with the rental policy is

identical to that arises in a static model. I then demonstrate that when the rental policy is not

feasible, the effects of durability may turn price structure upside down.

It is possible that a platform which subsidizes one side under the rental policy does not

offer any subsidies under durability. In contrast, it possible to find situations where the optimal

rental policy does not require any subsidies, while optimal pricing under durability subsidizes

the durable side. More generally the main insight that the users who value the other side more

should pay a higher price may no longer hold when durability is taken into account.

The model in its current form is rather stylized and ignores a number of relevant dimensions.

I do not consider arrival of new consumers. I also do not take into account depreciation in time

possibly at different rates on both sides. A desirable extension to the current model would be

one where the platform offers its services over a long time horizon, new consumers arrive at

each period while some old consumers leave the market. In addition, the decisions of users on

both sides may be durable, but they depreciate at varying rates. Of course, it would be very

interesting to investigate competitive consequences of durability as well. The analysis of such

issues with more elaborate models are left for future research.
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Appendix

A.1 Derivation of the second period pricing rules

The second period rational expectations demand functions are determined by the two functions

mB(p
2
B , p

2
S , x) and n2

S(p
2
B , p

2
S , x) which solve the following two equations:

mB(p
2
B, p

2
S , x) = FB(αB + vB(n

2
S(p

2
B, p

2
S , x))) − p2B)− x

n2
S(p

2
B, p

2
S , x) = FS(αS + vS(x+mB(p

2
B , p

2
S , x)))− p2S).

Given the identities provided by these two equations, the derivatives of the left and right

hand sides has to be equal with respect to any variable. Thus, taking the derivative of each

equation first with respect to p2B and then with respect to p2S yields four linear equations

in the partial derivatives of interest:
∂mB(p2B ,p2S,x)

∂p2
B

,
∂mB(p2B ,p2S ,x)

∂p2
S

,
∂n2

S(p
2
B,p2S ,x)

∂p2
B

and
∂n2

S(p
2
B ,p2S ,x)

∂p2
S

.

In order to simplify the exposition, let v̂′B = v′B(n
2
S(p

2
B , p

2
S , x)), v̂

′
S = v′S(x + mB(p

2
B, p

2
S , x)),

f̂B = fB(αB + vB(n
2
S(p

2
B, p

2
S , x) − p2B), f̂S = fS(αS + vS(x + mB(p

2
B , p

2
S , x) − p2S), F̂B =

FB(αB + vB(n
2
S(p

2
B , p

2
S , x) − p2B) and F̂S = FS(αS + vS(x + mB(p

2
B , p

2
S , x) − p2S). Further-

more define Q̂ = 1− v̂′B v̂
′
S f̂B f̂S. Using these definitions, the system of equations that the partial

demand derivatives have to satisfy is given by

∂mB(p
2
B , p

2
S , x)

∂p2B
= f̂B

(

v̂′B
∂n2

S(p
2
B , p

2
S , x)

∂p2B
− 1

)

∂mB(p
2
B , p

2
S , x)

∂p2S
= f̂B v̂

′
B

∂n2
S(p

2
B, p

2
S , x)

∂p2S
(27)

∂n2
S(p

2
B , p

2
S , x)

∂p2B
= f̂S v̂

′
S

∂mB(p
2
B , p

2
S , x)

∂p2B

∂n2
S(p

2
B , p

2
S , x)

∂p2S
= f̂S

(

v̂′S
∂mB(p

2
B, p

2
S , x)

∂p2S
− 1

)

Given that the system of equations in (27) is linear in the partial derivatives of interest,

solution of the system yields the desired demand derivatives. These are given by

∂mB(p
2
B , p

2
S , x)

∂p2B
= − f̂B

Q̂

∂mB(p
2
B , p

2
S , x)

∂p2B
= − v̂′B f̂B f̂S

Q̂
(28)

∂n2
B(p

2
B , p

2
S , x)

∂p2B
= − v̂′S f̂B f̂S

Q̂

∂n2
B(p

2
B , p

2
S , x)

∂p2B
= − f̂S

Q̂

For the system of rational expectation demands to be sensible, it is necessary that Q̂ > 0, or

equivalently v̂′B v̂
′
S f̂B f̂S < 1.
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Solving (7) for p2S − cS , substituting in (6) along with the demand derivatives demand

derivatives presented in equation (28) and solving for p2B yields

p2B = cB − v̂′SF̂S +
F̂B − x

f̂B

which after rearranging yields the elasticity rule presented in equation (8). Similarly, solving (6)

for p2B− cB , substituting in (7) along with the demand derivatives demand derivatives presented

in equation (28) and solving for p2S yields

p2S = cS − v̂′B(F̂B − x) +
F̂S

f̂S

which results in the elasticity rule for the seller price as given in equation (9).

A.2 Derivation of the first period pricing rules

The first period rational expectations demand functions are determined by the two functions

n1
B(p

1
B , p

1
S) and n1

S(p
1
B, p

1
S , x) solve

n1
B(p

2
B, p

2
S) = FB(αB + vB(n

1
S(p

2
B , p

2
S , x))) − p2B + δp2B

∗
(n1

B(p
1
B , p

1
S)))

n1
S(p

1
B, p

1
S) = FS(αS + vS(n

1
B(p

1
B, p

1
S))) − p1S).

The demand derivatives required to solve the optimization problem of the platform can be

found with the help of totally differentiating these two expressions with respect to the buyer

and seller prices. Once again it is useful to introduce some notation to simplify the exposition.

In particular, let v̄′B = v′B(n
1
S(p

1
B , p

1
S)), v̄

′
S = v′S(n

1
B(p

1
B , p

1
S)), f̄B = fB(αB + vB(n

1
S(p

1
B , p

1
S) −

p1B +deltap2B
∗
(n1

B(p
1
B , p

1
S))), f̄S = fS(αS + vS(n

1
B(p

1
B , p

1
S)−p1S), F̄B = FB(αB + vB(n

1
S(p

1
B , p

1
S)−

p1B + δp2B
∗
(n1

B(p
1
B, p

1
S))) and F̄S = FS(αS + vS(n

1
B(p

1
B, p

1
S) − p1S). Also let ρ(x) =

∂p2
B

∗
(x)

∂x
and

define ρ̄ = ρ(n1
B). Furthermore, define Q̄ = 1 − δr̄hof̄B − v̄′B v̄

′
S f̄B f̄S. Using these definitions,

the system of equations that the partial demand derivatives have to satisfy is given by

∂n1
B(p

1
B , p

1
S)

∂p1B
= f̄B

(

δρ̄
∂n1

B(p
1
B , p

1
S)

∂p1B
+ v̄′B

∂n1
S(p

1
B, p

1
S)

∂p1B
− 1

)

∂n1
B(p

1
B , p

1
S)

∂p1S
= f̄B

(

δρ̄
∂n1

B(p
1
B , p

1
S)

∂p1S
+ v̄′B

∂n1
S(p

1
B , p

1
S)

∂p1S

)

(29)

∂n1
S(p

1
B , p

1
S)

∂p1B
= f̄S v̄

′
S

∂n1
B(p

1
B, p

1
S)

∂p1B

∂n2
S(p

1
B , p

1
S)

∂p1S
= f̄S

(

v̄′S
∂n1

B(p
1
B , p

1
S)

∂p1S
− 1

)
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Solving the linear system of equations in (29) for the demand derivatives of interest yields

∂n1
B(p

1
B , p

1
S)

∂p1B
= − f̄B

Q̄

∂n1
B(p

1
B , p

1
S)

∂p1B
= − v̄′B f̄B f̄S

Q̄
(30)

∂n1
B(p

1
B , p

1
S)

∂p1B
= − v̄′S f̄B f̄S

Q̄

∂n1
B(p

1
B , p

1
S)

∂p1B
= − f̄S(1− δρ̄f̄B)

Q̄

In order that the demands from both sides are complementary and decreasing in both prices, it

is necessary that Q̄ > 0, or equivalently δr̄hof̄B + v̄′B v̄
′
S f̄B f̄S < 1.

Similar to the solution for the second period pricing problem, I first solve (13) for p1S − cS ,

and substitute the result in (12). Then, substituting the demand derivatives given in equation

(30) and solving for p1B yields

p1B = cB + δ(p2B
∗
(n1

B)− cB)− δρ̄F̄B − v̄′SF̄S +
F̄B

f̄B
.

Rearranging this expression results in the pricing rule presented in equation (14). Similarly, I

then solve (12) for p1B − cB and substitute the result in (13). As a next step, I substitute the

demand derivatives from equation (30) and solve for the first period seller price, p2S, which is

given by

p1S = cS − v̄′BF̄B +
F̄S

f̄S
.

Rearranging this expression results in the elasticity rule for the seller price as given in equation

(15).

33


