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1 Introduction

Signaling models are concerned with situations where an agent is able to send messages about infor-

mation that he could not otherwise credibly reveal. Private information is valuable to the extent that

it helps to predict the outcome of the transaction between the sender and the receiver. When the

relationship involves repeated interactions, observing each outcome allows the receiver to update his

belief. He is therefore able to gather knowledge about the sender after the signaling stage, a possibility

that is usually excluded in signaling games. We argue that this omission is not inconsequential by em-

bedding Bayesian learning in a standard signaling model and establishing that: (i) the set of pooling

equilibria shrinks as the speed of receiver learning increases; (ii) qualitatively new, “multiple pooling”

equilibria emerge; and (ii) forward induction (as captured by the Intuitive Criterion) loses part of its

predictive power. These features arise because expectations about future payoffs do not solely depend

on the equilibrium belief, as is commonly assumed in the literature, but also on the sender’s type.

Even when agents are indistinguishable right after the signaling stage, their expectations vary with

their productivity because they know that it will be identified over time. The standard premise that

senders are equally rewarded in pooling equilibria is therefore violated.

For the sake of concreteness, this general mechanism and its ramifications are illustrated in a job-

market signaling model along the lines of Spence’s (1973) seminal work. We consider an economy where

workers are better informed about their ability than prospective employers. In order to signal their

capacity, talented individuals have an incentive to invest in education. Alternatively, they may decide

to save on educational costs and trust that their actual productivity will be revealed by performances

on-the-job. Spence’s model does not take into account this countervailing incentive because it assumes

that all information is collected prior to labor market entry. Most of the ensuing theoretical literature

follows Spence’s approach and has ignored employer learning.1 Econometricians, on the other hand,

have devised ingenious tests for unobservable characteristics in order to estimate the efficiency of signal

extraction in labor markets. Empirical evidence documented in Lange (2007) shows that employers

are not only able to elicit information about workers’ abilities but that the speed at which they do so

is quite fast, with nearly 95% of the statistically significant information being collected after solely 3

years.2

1The paper by Gibbons and Katz (1991) is a notable exception. They do not focus on the game theoretical analysis

but on the implications of asymmetric information for layoff decisions. Although not directly concerned with learning,

the paper by Feltovich et al. (2002) also allows correlated information to be revealed after the signaling stage. They

consider a set-up with three types and show that high types may pool with low types at the lowest level of education.

More recently, Daley and Green (2007) have analyzed a signaling model with grades.
2This is among the latest contributions to a strand of literature measuring the speed of employer learning. The
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This finding suggests that it is important to assess whether the outcomes of the signaling game are

indeed unaffected by the learning process. We show in this paper that it is not the case. Firstly, the

set of pooling equilibria shrinks as the speed of learning grows, as the result of the tradeoff between

learning a worker’s ability via the education signal or on the job. Secondly, qualitatively new types

of equilibria may arise where more than one common level of education is acquired by both types

of workers with positive probability (multiple pooling). Thirdly, the standard refinement argument

embodied in the Intuitive Criterion does not bite when employer learning is sufficiently fast.

The last observation is particularly relevant from a game-theoretic standpoint. The multiplicity

of equilibria in Spence’s model has been a motivation for the vast literature on refinement concepts.

For signaling games with only two types, the Intuitive Criterion of Cho and Kreps (1987) is the

most commonly used refinement because (in the two-types case) it excludes all but one separating

equilibrium. We prove that this does not always hold true when employers are able to update their

beliefs. The key difference between the two environments is that learning yields higher asset values

for talented individuals even when pooling is the equilibrium outcome. The gap increases with the

speed of learning as low and high types become less and more optimistic, respectively. The stronger

the correlation between a worker’s ability and his observable performance, the more attractive it is

for high types to reveal their ability on-the-job instead of paying the educational costs.3 This is why

high types find it optimal to pool with low types when learning is fast.

In order to illustrate the generality of this mechanism, we set up our model in the most parsimonious

fashion. Our framework embeds Spence’s original game into a dynamic framework with Bayesian

learning on the side of firms. Workers of different abilities can acquire education before entering the

labor market. We assume that their abilities are either high or low. The two types case enables us to

concentrate on the conceptual differences between our model and basic signaling games because the

Intuitive Criterion delivers a clear prediction which can be used as a benchmark. On the other hand,

allowing for more than two types would distract us from our main focus by making it necessary to

rely on more elaborate and diverse refinement concepts.

identifying assumption is that econometricians have access to a correlate of workers’ abilities that is not available to

employers (generally Armed Forces Qualification Test scores of workers). Farber and Gibbons (1996) and Altonji and

Pierret (2001) document that the impact of this correlate on wages increases with labor market experience. Even though

this result indicates that employers learn over time, it does not distinguish between symmetric and asymmetric learning

and so does not test job market signaling. Nevertheless, as explained by Lange (2007), the estimated speed of employer

learning can be used to place an upper bound on the contribution of signaling to the gains of schooling.
3On the other hand, the incentive for low types to send misleading signals, and thus to acquire education, increases with

the speed of employer learning. Haberlmaz (2006) proposes a partial equilibrium model which underlies the ambiguity

of the relationship between the value of job market signaling and the speed of employer learning.
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For similar reasons, we do not investigate all the potential interactions that might be induced

by the learning process in particular frameworks but instead adopt a more general (reduced-form)

approach to model the correlation between employer learning and workers’ expected incomes. Then

we show that these properties are fulfilled by the simplest models of passive learning where the worker’s

only signal is education and firms update their beliefs using Bayes’ rule, so that types are gradually

revealed over time. Under this interpretation, our setup bears similarities with Jovanovic’s (1979)

matching model with the crucial difference that uncertainty is not match-specific but worker-specific.

Hence it bridges the gap between the theoretic literature on signaling games and the labor market

literature. This suggests that, even though our description of the labor market is of course stylized,

the general properties laid out in Section 2 are likely to hold true in most models featuring signaling

and learning.

It must also be remarked that it is not our objective to obtain uniqueness results via an appro-

priately tailored refinement concept, but rather to explore the implications of employer learning in

signaling models. Hence, we do not see our work as part of the “refinement program” for signaling

games. Rather we view it as a parsimonious step towards making signaling models more realistic

in a direction whose importance has been widely documented in the labor economics literature. It

is our hope that the added elements and our previously unforeseen findings will pave the way for a

systematic research program integrating signaling and employer learning.

The paper is organized as follows. Section 2 lays out the model’s setup. To underline the generality

of the results, we initially adopt a reduced form approach. We define workers’ payoffs or value functions

and specify, using intuitive arguments, which key properties they should fulfill in order to capture the

learning process. Section 3 then illustrates how these properties can be derived from first principles. It

describes the signal extraction problem in examples with both discrete and continuous time settings.

In Section 4, we analyze the equilibria (in pure and mixed strategies) of our model using general value

functions. In Section 5, we discuss the conditions under which the Intuitive Criterion can refine the set

of equilibria and explain why they are not met when employer learning is efficient enough. Section 6

concludes. Proofs are relegated to the Appendix.

2 Signaling and Employer Learning

Workers differ in their innate abilities. They can be of different types which determine their productiv-

ity. Nature initially selects types according to pre-specified probabilities. The main ingredient of the

model is information asymmetry: Workers know their abilities whereas employers must infer them.

The game is as follows. In a first step, the worker chooses an education level. In a second step, the
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industry offers a starting wage based on beliefs derived from the education signal. In Spence’s static

framework, the game ends as the worker enters the labor market. In our set-up, in contrast, a third

step is added, where the relationship develops, with the industry being able to extract information

from noisy realizations of the worker’s productivity. Rather than proposing a particular dynamic

model, we adopt a reduced-form approach to employer learning and delay its micro-foundation to

Section 3.

I. Education decision: We restrict our attention to cases where workers (senders) are of only two

types, i = h (high) or i = l (low). Nature assigns a productivity p ∈ {pl, ph} to the worker with

ph > pl. High-types account for a share µ0 < 1 of the population. For simplicity, we assume that

workers are infinitely lived and that they discount the future at the common rate r. Before entering

the labor market, workers choose their education level e ∈ [0,+∞). To isolate the effect of signaling,

we do not allow education to increase productivity. Its only use is to signal abilities which are initially

unobserved by the industry (receiver).

Let the function c : R
++ ×R

+ → R
+ specify the cost of acquiring education. That is, c(p, e) is the

cost that a worker with innate productivity p has to pay in order to acquire education level e.4 The

cost function is twice differentiable with ce(p, e) > 0 and cee(p, e) ≥ 0, hence strictly increasing and

convex in the level of education. As commonly assumed in the literature, we also let cp(p, e) < 0 and

cpe(p, e) < 0, so that total and marginal costs of education are strictly decreasing in ability. The last

requirement ensures that low types have steeper indifference curves than high types because it implies

the submodularity condition

c(ph, e′′) − c(ph, e′) < c(pl, e
′′) − c(pl, e

′) whenever e′′ > e′ ,

which is commonly referred to as the Single Crossing Property.

II. Wage setting: As in Spence’s model, a worker is paid his expected productivity. This wage

setting rule is justified as a proxy for a competitive labor market or a finite number of firms engaged

in Bertrand competition for the services of the worker. Under the first possibility, one can make sense

of the condition by assuming a single player in place of the industry, with payoffs given by a quadratic

loss function −(w − p)2. In any Perfect Bayesian Equilibrium, optimal behavior of this player will

lead to a wage offer equal to the expected productivity.5 Under the second possibility, where Bertrand

4Even though workers will only have productivity levels in {pl, ph}, it is convenient to define the cost function for all

potential productivities.
5Even though the resulting game is properly specified, there is no economic interpretation for the payoff function

−(w − p)2 but rather for the result of the optimization problem.
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competition among multiple firms is explicitly introduced, the equilibrium concept must be refined to

ensure that all firms share the same beliefs about the worker.6 Let µ(e), which we abbreviate by µ

when no confusion may arise, denote the probability that the industry attaches to the worker being

of the high type given education signal e. The initial wage is given by w(µ) = (1 − µ)pl + µph. We

can therefore use the equilibrium belief of the industry to denote its response to a particular signal.

III. Expected income: The key departure from Spence’s model is the third step where we specify

the sender’s expected income. We adopt in this section a reduced-form approach: Given the actual

productivity p and the employer’s prior µ = µ(e), expected earnings are given by a value function7

v(p, µ) which captures the impact that employer learning has on future income.8

For the purposes of enabling comparative statics, we explicitly introduce two additional parameters.

The first one is the common discount rate r of workers whose interpretation depends on the particular

model behind the value function. We adopt the convention that the forward-discounted value is given

by w/r when the agent receives a constant wage w, as in a continuous-time model with r > 0. The

second parameter measures the speed of learning of the industry s > 0.9 Thus we will write v(p, µ|r, s)
whenever we wish to discuss the effect of those two parameters.

Let us now specify the properties that should be imposed on value functions and the rationales

behind them. As employment histories unfold, employers observe the cumulative outputs produced

by workers and use this information to revise their priors. Consider how the updating process affects

the expectations of low types. For every µ ∈ (0, 1), they are offered an initial wage w(µ) that is above

their actual productivity pl. On average, realized outputs will induce the industry to lower its belief

and thus wages. Their expected income v(pl, µ) is therefore smaller than the forward discounted value

of the starting wage w/r, but larger than the value pl/r that they would have obtained if the industry

6This is the approach adopted by Mas-Colell et al (1995) in Section 13.C of their textbook. Notice that common

beliefs follow from the concept of sequential equilibrium but not of Perfect Bayesian Equilibrium. However, sequential

equilibrium is only defined for finite games.
7From a purely game-theoretic point of view, the value function needs to be interpreted as an equilibrium device, in the

sense that, given a specific micro-foundation (i.e. a specification of the part of the game which the function summarizes),

the computation of the outcome delivered by the function must rely on the explicit use of a uniquely defined equilibrium

concept. As we will show in Section 3, alternative value functions can be obtained from different models.
8The value function depends on the industry’s prior rather than the initial wage because, as commented before, we use

the belief of the industry to denote its response to the education signal. This relies on the equilibrium requirement that

beliefs uniquely determine wages. Strictly speaking, out-of-equilibrium behavior for the industry might involve wages

which are not consistent with beliefs. This possibility, however, is inconsequential for the analysis because of the game

structure. Alternatively, one can simply consider that Spence’s modeling device, which yields a wage of w(µ) is replaced

by v(p, µ) in our model.
9A micro foundation for the speed of learning is derived in the continuous time model of Section 3.

6



had known their type with certainty. A symmetric argument holds for high types because their initial

wage is lower than their actual productivity. On the other hand, when industry’s beliefs collapse to

certainty,10 that is µ ∈ {0, 1}, further information will be ignored and the initial wage will never be

altered. Since we want to encompass Spence’s model as a particular case, we first introduce a weak

implication of this argument:

P0. For all µ ∈ (0, 1),
ph

r
> v(ph, µ) ≥ w(µ)

r
≥ v(pl, µ) >

pl

r
.

Further, when µ ∈ {0, 1}, v(ph, µ) = v(pl, µ) = w(µ)/r.

Because of learning, we will actually expect a stronger variant of this property to hold:

P1. For all µ ∈ (0, 1),
ph

r
> v(ph, µ) >

w(µ)

r
> v(pl, µ) >

pl

r
.

Further, when µ ∈ {0, 1}, v(ph, µ) = v(pl, µ) = w(µ)/r.

Property P1 ensures that firms are able to update their beliefs towards the realization of the randomly

assigned productivity. We will show in Section 3 that this is a general consequence of Bayesian learning.

Compare now two industries with different speeds of learning. Workers whose productivity is

overestimated prefer being employed in the industry where signal extraction is slow. Conversely,

workers whose productivity is underestimated would rather choose the industry where actual abilities

are quickly recognized. The following property captures this intuition.

P2. For all µ ∈ (0, 1), we have that ∂v(ph, µ|r, s)/∂s > 0 and ∂v(pl, µ|r, s)/∂s < 0, hence

v(ph, µ|r, s) is strictly increasing in s whereas v(pl, µ|r, s) is strictly decreasing in s.

We will show in Section 3 how to derive the speed of learning from primitive parameters describing

the production process and prove that its impact on v(·) is as postulated in P2.

Finally, consider limit cases where learning is very slow or very fast. As the speed of learning goes

to zero, employers have no possibility to update their initial beliefs: Wages are never revised and the

value functions converge to their original specification in Spence’s model. Conversely, when the speed

of learning goes to infinity, types are immediately recognized and signaling becomes redundant.

P3. For all µ ∈ (0, 1), lim
s→0

v(p, µ|r, s) = w(µ)/r and lim
s→∞

v(p, µ|r, s) = p/r.

10Observe that, since we are describing the game and not an equilibrium outcome, we do not assume that beliefs are

correct and thus define the value function of the low (high) type when µ = 1 (µ = 0).
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Definition 1. A value function is a mapping assigning a lifetime income v(p, µ) to each belief

µ ∈ [0, 1] and productivity p ∈ {pl, ph}. It is assumed to be strictly increasing and twice differentiable

in µ, and to fulfill property P0.

A value function is said to exhibit weak learning if it fulfills the more demanding property P1.

It exhibits strong learning if it fulfills properties P1, P2, and P3.

V. Equilibrium concept: The equilibrium concept is just Perfect Bayesian Equilibrium for the

game as specified before.11 Combining the value and cost functions yields the payoff function for

workers: u(e, µ|p) ≡ v(p, µ) − c(p, e). As discussed in sub-section II, industry’s payoffs are inconse-

quential as long as the specification leads to wage offers equal to the expected productivity given the

beliefs.

We will consider equilibria in pure and mixed strategies (“hybrid equilibria”). The very formaliza-

tion of both Spence’s model and ours is such that the industry never has an incentive to randomize.

Hence, an equilibrium in mixed strategies can be defined as follows.

A signaling equilibrium is made out of a pair of probability distributions (q(·|p))p∈{pl,ph} on R
+

describing the education levels chosen by both types, and a belief system (µ(e))e∈R+ describing the

priors of the industry given any possible signal, that satisfies the following properties:

• Sequential rationality for the workers: For p ∈ {pl, ph}, if e∗ belongs to the support of q(·|p),

then e∗ ∈ arg maxe∈R+ u(e, µ(e)|p).

• (Weak) consistency of beliefs: The industry’s initial beliefs µ(e) are consistent with Bayes’ rule

for any educational attainment e in the support of either q(·|ph) or q(·|pl).

• Sequential rationality for the industry : Given any education level e, the industry offers an initial

wage equal to w(µ(e)).

In the pure strategy case, the support of the distributions q(·|p) is a singleton and hence a signaling

equilibrium in pure strategies can be described by a belief system as before, and a strategy profile

(el, eh) describing the deterministic education levels chosen by both types.12

11There is some confusion in the older game-theoretic literature with respect to the Perfect Bayesian Equilibrium

(PBE) concept. For games with the structure of signaling games, PBEs coincide with “Weak PBEs” which are defined as

pairs of beliefs and strategy profiles such that actions at any information set maximize payoffs given the beliefs (sequential

rationality) and beliefs are consistent with strategies through Bayes’ rule along the equilibrium path (weak consistency).

This is the equilibrium concept that the Intuitive Criterion aims to refine. Unfortunately, some of the earlier literature

called PBEs “sequential” in reference to the sequential rationality requirement. The concept of sequential equilibrium

(Kreps and Wilson 1982), however, is defined for finite games only and hence does not apply in our framework.
12 For the mixed-strategy case, we require workers to randomize among optimal education levels only. This eliminates
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3 Bayesian Learning

Spence’s model is encompassed by our model taking the value function v(p, µ) = w(µ)/r, with the

interpretation that the starting wage is final and no further adjustments (of wages or beliefs) are

possible. This function fulfills the basic conditions in Definition 1. Alternatively, it can be interpreted

as a limit case of a value function with strong learning when s goes to 0.

This section shows that the stronger properties listed in Definition 1 not only conform to intuition

but also follow from Bayesian learning. We propose three examples in order of increasing complexity.

3.1 Reports model

The first model is included mostly for illustrative purposes as it allows for considerably simpler com-

putations. We assume that updating occurs only once over the labor market career of a given worker.

Thus production can be divided in just two periods. The employer has access to a detection technology

which, at the end of the first period, delivers a signal about the productivity of the worker. We call

this signal a “report” in order to avoid confusion with the education decision.13

There are two possible reports, G(ood) and B(ad). If the productivity of the worker is high, a

good report is delivered with probability d(s) > 1/2 for s ∈ (0,+∞), and a bad report is delivered

with the complementary probability. If the worker’s productivity is low, the likelihoods of a good or

bad report are 1 − d(s) < 1
2 and d(s), respectively. The function d(s) is strictly increasing in s with

the following lower and upper bounds: lims→0 d(s) = 1/2 and lims→∞ d(s) = 1.

Firms pay workers their promised wages for the first period and then update their priors using

Bayes rule. For the second period, workers are paid their expected productivity. The discount factor

between both periods is δ = 1/r ∈ (0, 1).14 Accordingly, the expected lifetime income of an employee

from the onset technical difficulties associated with the inclusion of suboptimal strategies with zero probability in the

support of the equilibrium strategies. The typical examples we have in mind at this point involve randomization over

finitely many education levels. For such equilibria, belief consistency amounts to the assertion that, if there exists a

p ∈ {pl, ph} such that q(e|p) > 0, then µ(e) = µ0q(e|ph)/[µ0q(e|ph) + (1 − µ0)q(e|pl)]. A priori, however, an equilibrium

strategy might prescribe a randomization over an infinite set.
13That is, actual production by the worker does not influence learning. A possible justification is that output cannot

be traced back to each individual. However, we insist that this is merely a “toy model”. The reader is referred to the

following two sub-sections for more realistic micro-foundations.
14This notation is introduced for consistency with the discounting factor in Definition 1 and the continuous time model.

Alternatively, one can consider that workers are paid their expected productivity over an infinite horizon after the report

is generated. In any case, these timing conventions are inessential to the analysis.
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with ability i satisfies the following equation

v(p, µ|r, s) =
1

1 + r

(
w(µ) +

E[w(µ′)|p, µ, s]

r

)
, (1)

where µ′ denotes the second period belief of the industry and E[·|p, µ, s] is the expectation operator

conditional on the industry’s prior, worker’s type and speed of learning. The scale factor 1/(1 + r)

ensures that the numerical value of receiving the wage w twice is w/r.

As the updated belief µ′ is formed according to Bayes rule, we have

µ′(µ,G) =
µd

µd + (1 − µ)(1 − d)
and µ′(µ,B) =

µ(1 − d)

µ(1 − d) + (1 − µ)d

Given these beliefs, second period wages w(µ, S) = w(µ′(µ, S)) depend on the signal S ∈ {B,G} and

are given by

w(µ,G) =
µdph + (1 − µ)(1 − d)pl

µd + (1 − µ)(1 − d)
and w(µ,B) =

µ(1 − d)ph + (1 − µ)dpl

µ(1 − d) + (1 − µ)d
.

Weighting these two payoffs with their respective probabilities yields the expected wage in the second

period

E[w(µ′)|pl, µ] = (1 − d)w(µ,G) + dw(µ,B) and E[w(µ′)|ph, µ] = dw(µ,G) + (1 − d)w(µ,B).

Straightforward but cumbersome computations show that v(p, µ|r, s) fulfills all the requirements

for strong learning listed in Definition 1 with the single exception that lims→∞ v(p, µ|r, s) 6= p/r.

Property P3 does not hold because employer learning matters solely for wages in the second of two

fixed periods and so the weight of the starting wage does not become negligible in the limit. This is

why the Reports model generates a weak value function in the sense of Definition 1.

3.2 Discrete time model

Let us now consider a model where beliefs are explicitly derived from observed output. For simplic-

ity, we maintain the timing conventions of the Reports model so that two periods are sufficient to

characterize a worker’s career. The only difference is that output is observed by the industry at the

end of the first period. Realizations are not deterministic15 but randomly drawn from a continuous

density gi(·) with a mean equal to the worker’s type pi for i ∈ {l, h}. The sampling distributions share

the same support and are common knowledge. The randomness might be inherent to the production

process or to the imperfect precision of the monitoring technology.

15Otherwise learning would be perfect by the end of the first period.
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Lifetime incomes follow from the same equation (1) as in the Reports model. On the other hand,

the updating rule differs as second period beliefs now depend on the output density

µ′(x, µ) =
µgh(x)

µgh(x) + (1 − µ)gl(x)
,

whereas wages w(µ) = pl + (ph − pl)µ are given by an affine function of beliefs. In spite of these

additional features, the two-period model yields predictions that are similar to that of the more

stylized Reports model.

Proposition 1. The value function for the two-period model satisfies property P1 and so exhibits weak

learning.

We have not given a specific definition for the speed of learning s in the discrete time model

because it would require further parametric restrictions on the g(·) distributions.16 In any case,

learning is weak in the sense of Definition 1 because P3 does not hold for any conceivable measure

of s. To see this, consider the limit case where uncertainty becomes negligible as gh(·) and gl(·)
converge to Dirac delta functions. Then learning is at its most efficient because types are perfectly

revealed at the end of the first period. Nevertheless, the lifetime income of high types converges to
1

1+r
[w(µ) + v(ph, 1)] < v(ph, 1) = ph/r.17 As in the Reports models, the upper limit property in P3

is not fulfilled because first-period earnings solely depend on the prior and thus do not vary with the

speed of learning.

3.3 Continuous time model

In the last two models, the length of time required to elicit information is treated as a primitive

parameter. This is an artifice of the two-period structure. To the contrary, industries where learning

is more efficient should also be characterized by shorter periods of information acquisition. We now

address this issue by characterizing Bayesian learning in a continuous time set-up and establishing

that it gives rise to strong learning in the sense of Definition 1.

We assume that output realizations are random draws from a Gaussian distribution with a time

invariant average productivity.18 Thus the cumulative output Xt of a match of duration t with a

worker of type i ∈ {l, h}, follows a Brownian motion with drift

dXt = pidt + σdZt ,

16For example, it is shown in next sub-section that when both gi(·) distributions are normal with common variance

σ2, a natural measure for s is the signal/noise ratio: (ph − pl)/σ2.
17Conversely, the lifetime income of low types converges to 1

1+r
[w(µ) + v(pl, 0)] > v(pl, 0) = pl/r.

18One can easily verify that letting workers accumulate general human capital would not substantially modify our

conclusions.
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where dZt is the increment of a standard Brownian motion. The cumulative output 〈Xt〉 is observed

by both parties. The employer uses the filtration
{
FX

t

}
generated by the output sample path to revise

his belief about pi. The variance σ is constant across workers for otherwise firms would be able to

infer types with arbitrary precision by observing the quadratic variation of 〈Xt〉.19 Starting from a

prior µ0 equal to the fraction of high ability workers in the population, the employer applies Bayes

rule to update his belief µt ≡ Pr
(
p = ph| FX

t

)
. His posterior is therefore given by

µ (Xt, t|µ0) =
µ0gh(Xt, t)

µ0gh(Xt, t) + (1 − µ0)gl(Xt, t)
, (2)

where gi(Xt, t) ≡ e−
(Xt−pit)2

2σ2t is the rescaled20 density for a worker of type i. The analysis is simplified

by the change of variable θt ≡ µt/(1 − µt). θt is the ratio of “good” to “bad” belief. Given that µt is

defined over ]0, 1[, θt takes values over the positive real line. It follows from (2) that

θ (Xt, t| θ0) = θ0
gh(Xt, t)

gl(Xt, t)
= θ0e

s
σ (Xt−

1

2
(ph+pl)t) , (3)

where s ≡ (ph − pl)/σ is the signal/noise ratio of output. On the one hand, a larger productivity

difference between types increases the informativeness of the observations. On the other hand, a

higher variance hinders the industry’s ability to identify the mean of the output distribution. Thus

the bigger s, the more efficient learning is. By Ito’s lemma, the stochastic differential equation satisfied

by the belief ratio reads

dθ (Xt, t| θ0) =
∂θ (Xt, t| θ0)

∂Xt
dXt +

∂2θ (Xt, t| θ0)

∂X2
t

σ2

2
dt +

∂θ (Xt, t| θ0)

∂t
dt

= θ (Xt, t| θ0)
( s

σ

)
[dXt − pldt] . (4)

Replacing in (4) the law of motion of Xt, i.e. dXt = pidt + σdZt, yields the following stochastic

differential equations

(i) Low ability worker : dθt = θtsdZt ,

(ii) High ability worker : dθt = θts (sdt + dZt) .

The belief ratio θt increases with time for high types and follows a martingale for low types.21 In

both cases, a higher σ lowers the volatility of beliefs because larger idiosyncratic shocks hamper signal

19See, for instance, Chung and Williams (1990).
20The factor [σ

√
2πt]−1 is omitted because it simplifies in (2).

21It may be surprising that the belief ratio θt does not drift downward when the worker is of the low type. This is

because the belief ratio θt is a convex function of µt. Reversing the change of variable shows that, as one might expect,

the belief µt is a strict supermartingale when the worker’s ability is low.
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extraction. We are now in a position to derive expected lifetime incomes as a function of beliefs.

Conditional on a given cumulative output Xt, high and low types earn the same wage. Their expected

lifetime incomes differ nonetheless because high types are more optimistic about future prospects.

Using the laws of motion above, one can derive the Hamilton-Jacobi-Bellman equations

rv (pl, θ) = w(θ) +
1

2
(θs)2 v′′ (pl, θ) ,

rv (ph, θ) = w(θ) + θs2v′ (ph, θ) +
1

2
(θs)2 v′′ (ph, θ) .

Imposing the boundary conditions, limθ→0 v (pi, θ) = pl/r and limθ→∞ v (pi, θ) = ph/r for i ∈ {l, h},
yields the following closed-form solutions for the two ordinary differential equations.22
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Figure 1: Workers’ value functions in the continuous-time model. Parameters: r = 0.2, pl = 0, ph = 1.

22The closed-form solution is of independent interest, and the fact that it can be derived is an additional (technical)

contribution of this paper. To the best of our knowledge, the expressions available in the literature are based on the

premise that information is symmetric (Moscarini, 2005). In the working paper version of this article we also show how

to obtain a solution for cases where senders are uncertain about their productivity. As discussed in the Appendix, the

derivation crucially relies on the change of variable from µ to θ.
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Proposition 2. For the continuous time model, the expected lifetime incomes of workers as a function

of the belief ratio θ are given by

v (pl, θ) =
2σ

s∆

(
θα−

∫ θ

0

1

(1 + x)xα− dx + θα+

∫ ∞

θ

1

(1 + x) xα+
dx

)
+

pl

r

and

v (ph, θ) =
2σ

s∆

(
θγ−

∫ θ

0

1

(1 + x)xγ− dx + θγ+

∫ ∞

θ

1

(1 + x)xγ+
dx

)
+

pl

r
,

where α+ = 1
2 (1 + ∆), α− = 1

2(1 − ∆), γ+ = 1
2(−1 + ∆), γ− = 1

2(−1 − ∆), and ∆ =
√

1 + 8
(

r
s2

)
.

The value function satisfies properties P1, P2, and P3, and hence exhibits strong learning.

The continuous-time model hence provides a computable example of strong learning. Plots of

the value functions for a particular numerical example and several values of s are shown in Figure 1,

illustrating the properties listed in Definition 1. First, for any given belief µ ∈ (0, 1), the expected

incomes of low and high types are respectively smaller and bigger than the discounted value of their

current wage, hence P1 is satisfied. Second, as stated in P2, the gap increases when learning becomes

more efficient. Finally, the value functions converge to the discounted value of current wages when s

goes to zero and to step functions when s goes to infinity, as required by P3.

4 Equilibrium Analysis

Having provided alternative micro foundations for the assumptions laid out in Section 2, we proceed

to characterize the signaling equilibria of the game. We start with pure strategy equilibria, which

are fully described by the beliefs µ(e) and the education levels selected by both types, el and eh. If

el 6= eh, one speaks of a separating equilibrium, while the equilibrium is called pooling if el = eh. In

the second sub-section, we characterize mixed-strategy equilibria.

4.1 Pure-strategy equilibria

Separating equilibria are such that abilities are perfectly revealed: Depending on the education signal,

the beliefs of the industry on the equilibrium path are either µ = 0 or µ = 1. It follows that each type

receives an initial wage equal to his productivity and P1 implies that v(pi, 1) = pi/r for i ∈ {l, h}. In

other words, employer learning does not affect separating equilibria.
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Proposition 3. Consider any value function. An education profile (el, eh) with el 6= eh can be

sustained as a (separating) signaling equilibrium if and only if

(i) el = 0, and

(ii) eh ∈ [eh, eh] where eh > eh > 0 and these two education levels are uniquely defined by

c(pl, eh) − c(pl, 0) =
1

r
(ph − pl) = c(ph, eh) − c(ph, 0) .

Accordingly, the set of separating equilibria does not depend on the value function.

In pooling equilibria, both types select the same education level ep and are therefore offered the

same initial wage w(µ0). Contrary to the model without learning, Bayesian updating leads to different

lifetime incomes v(ph, µ0) > v(pl, µ0). As shown in the following proposition, this implies that the set

of pooling equilibria shrinks as the speed of learning increases.

Proposition 4. Consider any value function. A common education level ep can be sustained as a

pooling equilibrium if and only if ep ∈ [0, ep] where ep > 0 is uniquely defined by the equation

c(pl, ep) − c(pl, 0) = v(pl, µ0) −
pl

r
.

The upper bound fulfills ep < eh, where eh is as defined in Proposition 3. Further, under strong

learning, ep is strictly decreasing in the speed of learning s and lims→∞ ep = 0.

The set of pooling equilibria is given by a subset of the one in Spence’s model. Learning lowers

the upper-bound ep because the incentives for low types to mimic high types decrease as the ability

of firms to detect their productivity increases. Under strong learning and in the limit as s goes to

infinity, types are immediately revealed and education is worthless as a signal. This is why the set of

pooling equilibria collapses to the minimum level of education.

4.2 Mixed-strategy equilibria

As usual in signaling games, the model admits a plethora of mixed-strategy equilibria. Those are

often referred to as partial pooling or hybrid equilibria. The following Proposition shows that learning

supports mixed-strategy equilibria which are qualitatively different from those possible in Spence’s

model.23

23Proposition 5 can be refined assuming that, for all µ ∈ (0, 1), ∂2v(ph, µ)/∂µ2 < ∂2v(pl, µ)/∂µ2, a property that can

easily be established in the reports and discrete time models (and is also illustrated in Figure 1). Then, P1 implies

that there exists a unique belief µ∗ ∈ (0, 1) such that ∂v(pl, µ
∗)/∂µ ⋚ ∂v(ph, µ∗)/∂µ if and only if µ ⋚ µ∗. It is then

straightforward to show that, under weak or strong learning, µ(e) > µ∗ for all e ∈ Ep except possibly the minimum

education level in Ep (if a minimum exists).
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Proposition 5. Consider any value function. For any mixed-strategy signaling equilibrium, there

exists a set of education levels Ep such that the following properties hold:

(i) The support of the low types’ strategy consists of Ep and at most a further education level, el = 0,

such that el < e for all e ∈ Ep.

(ii) The support of the high types’ strategy consists of Ep and at most a further education level eh,

such that eh > e for all e ∈ Ep.

(iii) The industry’s beliefs µ are strictly increasing on Ep.

In Spence’s model, Ep contains at most one education level, but this is not true for general value

functions.

Equilibria with Ep = ∅ are the separating equilibria of Proposition 3. The pooling equilibria of

Proposition 4 are such that Ep = {ep} where no additional education levels are chosen. In Spence’s

model, the set Ep (if nonempty) always consist of a unique education level, but this is not true in

general for other value functions. Employer learning qualitatively enriches the set of mixed equilibria:

multiple pooling may arise, i.e. equilibria with more than one education level chosen by both types.

Below we construct an illustrative example where low types randomize among three education levels,

two of which are also chosen by high types. This is the simplest situation which is not possible as an

equilibrium of Spence’s model. More complex examples are of course conceivable, e.g. with continuous

common support or multiple education levels, all of them chosen by both types.

Notice that, although the set of mixed-strategy equilibria might be large and capture complex

phenomena as multiple pooling, such equilibria are far from being arbitrary. In particular, the mono-

tonicity property (iii) above shows that there can be no counterintuitive effects. Education remains

informative in the sense that a higher (equilibrium) education level is always associated to a higher

belief that the worker is of the high type.

Before presenting our multiple-pooling example, let us briefly discuss the intuition for this result.

Consider first the model without employer learning. The basic argument for the impossibility of

multiple pooling is as follows. If a given type chooses two different levels of education with positive

probability, then he must be indifferent between those two education levels, implying that the difference

in expected income must equal that in educational costs. Without employer learning, each level

of education results in identical incomes for both types. By the single crossing property, however,

differences in educational costs across signals are higher for low types. Hence both types cannot

randomize over the same set. The contradiction disappears with employer learning because, even

when priors are identical, lifetime earnings differ across types.
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An example with multiple pooling. We base our example on the Reports model described before.

First, we specify numerical values for the parameters in order to simplify the computations. Let the

detection probability be d = 3/4, the productivities pl = 1 and ph = 2, the discount parameter

r = 11/10, and the cost function be given by c(p, e) = 9e
8+p

. The exogenously given population share

of high types is µ0 = 1/2.

The equilibrium is as follows. Three signals are chosen e0 = 0, e1, and e2, where only low

productivity workers send e0 = 0, but both types choose the other two levels with positive probability.

Table 1 specifies their numerical values, the probability q(e|p) with which each type selects them,

and the corresponding industry beliefs derived from Bayes’ rule. Note how equilibrium beliefs are

increasing in education as predicted by part (iii) of the last proposition.

e0 e1 e2

e 0 185
462

∼= 0.40 95
154

∼= 0.62

q(e|pl)
4
9

1
3

2
9

q(e|ph) 0 1
3

2
3

µ(e) 0 1
2

3
4

Table 1: An equilibrium with multiple pooling.

Given these beliefs, we have

v(pl, µ(e2)) − e2 = v(pl, µ(e1)) − e1 = v(pl, 0) =
10

11
,

and

v(ph, µ(e1)) −
9

10
e1 = v(ph, µ(e2)) −

9

10
e2 =

977

924
∼= 1.0574 >

10

11
.

Thus each type is indifferent among the specified education levels in the support of their own strategies.

We still have to establish that no type has an incentive to deviate. This is done specifying the out-of-

equilibrium beliefs µ(e) = 0 for all e /∈ {e0, e1, e2}. Under these beliefs, any such education level leads

to a lifetime earning of 10/11 and strictly positive education costs, thus neither of the two types has

an incentive to undertake those deviations.

Last, we must consider whether high types have an incentive to deviate to e0. This deviation

results in a payoff of 10/11, which is strictly smaller than the high types’ payoffs with e1 and e2.
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Hence, the postulated profile is a signaling equilibrium with multiple pooling, a qualitatively new

phenomenon which could not occur in Spence’s model.

5 The Intuitive Criterion

In order to narrow the large set of equilibria typically found in signaling games, a number of refinement

concepts have been developed (especially for games with three or more types). The Intuitive Criterion

(Cho and Kreps 1987), however, remains a milestone in the analysis of signaling games. When there

are only two types, it is well known that the Intuitive Criterion confers a predictive power to Spence’s

model by ruling out all but one separating equilibrium, known as the Riley equilibrium. The purpose

of this section is to show that this does not hold true when beliefs can be updated after the signaling

stage. More precisely, we prove that, even though the Riley equilibrium retains its importance as the

only separating equilibrium fulfilling the Intuitive Criterion, it is in general not true that all pooling

(or mixed) equilibria are ruled out.

A signaling equilibrium is said to fail the Intuitive Criterion if some type could strictly profit by

sending a non-equilibrium signal, provided that the sender adopts non-equilibrium beliefs satisfying

the following requirement: Assign probability zero to types which could never conceivably profit

by sending the considered signal. In our set-up, the Intuitive Criterion amounts to the following.

Fix a signaling equilibrium. Say that an unused signal e is equilibrium-dominated for type p if the

equilibrium payoff of type p is strictly larger than the payoff that type p would receive with signal e,

given any conceivable (non-equilibrium) belief of the industry µ′(e). The equilibrium is said to fail

the Intuitive Criterion if there exists a signal e and a type p such that the equilibrium payoff of type

p is strictly smaller than the minimum payoff that this type could get by sending signal e, given any

possible (non-equilibrium) beliefs µ′(e) of the industry which concentrate on the set of types for which

signal e is not equilibrium dominated.

Separating equilibria. In the absence of employer learning, the Riley equilibrium is the only sepa-

rating equilibrium which survives the Intuitive Criterion: Low types do not acquire any education and

high types send the signal eh defined in Proposition 3, implying that low types are indifferent between

their equilibrium strategy and acquiring education eh in order to receive v(pl, 1) = ph/r. Given that

separating equilibria do not depend on the value function, it is not surprising that the result carries

over to our set-up.24

24The proof of Proposition 6 is not included in the Appendix because it follows from standard arguments.
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Proposition 6. Consider any value function. The only separating equilibrium which survives the

Intuitive Criterion is the Riley equilibrium.

Survival of pooling equilibria. We now focus on pooling equilibria and use ep to denote the

common level of education. First, notice that no signal e < ep can be equilibrium dominated for

either type. Further, if a deviation to e > ep is equilibrium-dominated for the high type, it is never

profitable for the low type (in the sense of the Intuitive Criterion) to choose e. For such a deviation

would induce industry’s beliefs µ(e) = 0 and low types would obtain lower payoffs (pl/r) than at the

pooling equilibrium but incur strictly larger educational costs.

Hence, a pooling equilibrium with education level ep fails the Intuitive Criterion if and only if

there exists a signal e > ep such that it is equilibrium dominated for the low types but would result

in a better payoff than in equilibrium for the high types when the industry places zero probability on

the event that the sender is of the low type given signal e, i.e.

ph

r
− c(pl, e) < v(pl, µ0) − c(pl, ep) (equilibrium dominance for the low type), (ED)

ph

r
− c(ph, e) > v(ph, µ0) − c(ph, ep) (profitable deviation for the high type). (PD)

The equilibrium dominance condition (ED) implies that, even in the best-case scenario where the

worker could forever deceive employers, deviating to e is not attractive to low types. The firm can

therefore infer by forward induction that any worker with an off-equilibrium signal e has a high

productivity. The “profitable deviation” condition (PD) implies in turn that credibly deviating to e

is indeed profitable for the high type. Thus such an ep fails the Intuitive Criterion, or, following the

terminology of Kohlberg and Mertens (1986), is not stable.

Let e∗(ep) denote the minimum education level that does not trigger a profitable deviation for low

ability workers, so that (ED) holds with equality at e∗(ep). Condition (ED) can then be rewritten

as e > e∗(ep). Analogously, let e∗∗(ep) be such that (PD) holds with equality, then (PD) can be

rewritten as e < e∗∗(ep). These two thresholds always exist because c(p, e) is continuous and strictly

increasing in e.25 There exists an education level satisfying both conditions (ED) and (PD) if and only

if e∗(ep) < e∗∗(ep). This condition provides us with a straightforward proof that all pooling equilibria

fail the Intuitive Criterion in the model without learning. Assume that ep is stable, so that condition

25To see this, observe first that, because v(pl, µ0) < ph/r, we have ph/r − c(ph, ep) > v(ph, µ0) − c(ph, e) for e = ep.

Further, the cost function c(p, e) is continuous, strictly increasing, and convex in e, hence the inequality is reversed for

e large enough. This implies that e∗(ep) and e∗∗(ep) are well-defined. It also follows that e∗(ep) > ep and e∗∗(ep) > ep.
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(PD) is not satisfied at e∗(ep). This can be true if and only if

v(ph, µ0) − v(pl, µ0) ≥ c(pl, e
∗(ep)) − c(pl, ep) − [c(ph, e∗(ep)) − c(ph, ep)] . (5)

In Spence’s model or as s → 0, we have v(pl, µ0) = v(ph, µ0) = w(µ0)/r. The left hand side of

inequality (5) converges to zero while the right-hand side is strictly positive by the single crossing

property. The contradiction illustrates that, in the basic signaling model, one can always find a

credible and profitable deviation for high types.

When workers’ abilities are also revealed on-the-job, the premise leading to a contradiction is no

longer true. As stated in property P1, the expectations of high types are higher than those of low

types. In other words, v(ph, µ0|r, s) > v(pl, µ0|r, s) for all s > 0, and so inequality (5) can hold true

for some parameter configurations. We summarize these observations in the following result.

Proposition 7. The Intuitive Criterion rules out all pooling equilibria in the absence of learning, but

this is no longer true for value functions with either weak or strong learning.

In order to complete the proof of the statement, we need to exhibit an example where some pooling

equilibria survive the Intuitive Criterion. For the sake of computability, we will use the Reports model

again. We keep the same parameter values as in the previous example.26 Applying Proposition 4

yields that pooling equilibria correspond to education levels ep ∈ [0, ep] where ep > 0 is defined by

ep = v(pl, µ0) −
pl

r
=

185

462
∼= 0.40.

We claim that all pooling equilibria survive the Intuitive Criterion. To see this, we compute e∗

and e∗∗ as discussed before. Taking equalities in conditions (ED) and (PD) we obtain

e∗(ep) =
ph

r
− v(pl, µ0) + ep =

235

462
+ ep

∼= 0.51 + ep

and

e∗∗(ep) =
10

9

(ph

r
− v(ph, µ0)

)
+ ep =

925

2079
+ ep

∼= 0.44 + ep

i.e. e∗∗(ep) < e∗(ep) for all ep, which yields the desired conclusion.

According to property P2, the faster learning is, the wider the gap in expected income between

low and high types. This suggests that a pooling equilibrium is more likely to be stable when signal

extraction is efficient. The following proposition substantiates this intuition, showing that any pooling

equilibrium is stable for a high enough speed of learning.

26That is: d = 3/4, r = 11/10, pl = 1, ph = 2, µ0 = 1/2, and c(p, e) = 9e

8+p
.
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Proposition 8. Consider a value function with strong learning. Then, for any education level ep,

there exists a speed of learning s∗(ep) such that, for any s ≥ s∗(ep), if ep can be sustained as a pooling

equilibrium then it survives the Intuitive Criterion.

Figure 2 illustrates the mechanism behind Propositions 7 and 8. It displays the indifference curves

of high and low types when s = s∗(ep) and when s = 0. The dotted curves correspond to the former

case, the undotted curves to the latter one, that is, Spence’s model. The level of education e∗(ep|s)
where condition (ED) holds with equality is given by the point where the indifference curve of low

types crosses the horizontal line with intercept ph/r. Similarly, the level of education e∗∗(ep|s) where

condition (PD) holds with equality is given by the point where the indifference curve of high types

crosses the same horizontal line. The pooling equilibrium ep fails the Intuitive Criterion if and only if

e∗(ep) < e∗∗(ep). We can therefore conclude that ep is not stable when the indifference curve of low

types intersects the horizontal line with intercept ph/r before the indifference curve of high types .
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Figure 2: Workers’ indifference curves.

Consider first the basic model without learning. At the pooling level of education ep, the two types

enjoy the same asset value w(µ0)/r. The single-crossing property implies that e∗(ep) lies to the left of

e∗∗(ep), as shown in Figure 2. Thus any pooling equilibrium fails the Intuitive Criterion when there

is no learning. Consider now what happens when the speed of learning s increases. As high types are
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more quickly recognized, their asset value increases and their indifference curve shifts up. Conversely,

the indifference curve of low types shifts down. These opposite adjustments shrink the gap between

e∗(ep|s) and e∗∗(ep|s). The threshold speed of learning s∗(ep) is identified by the point where the gap

vanishes as the two indifference curves concurrently cross the horizontal line with intercept ph/r. For

any value function, property P3 ensures that one can always find such a point for any given ep because

lims→∞ v(ph, µ|r, s) = ph/r. Figure 2 also illustrates the fact that s∗(ep) is unique.

The economics behind Proposition 8 makes intuitive sense. When learning is fast, firms easily

infer the actual type of their employees. Then the benefits derived from ex-ante signaling are not

important. Conversely, when learning is slow, firms learn little from observed outputs. This leaves

fewer opportunities for high types to reveal their ability after the signaling stage and thus raises their

incentives to send a message. In the extreme case where the speed of learning goes to zero, all the

relevant information is collected prior to labor market entry.

According to Proposition 8, when the speed of learning is high enough, the Intuitive Criterion

does not rule out any pooling equilibrium. Proposition 4, however, states that the set of pooling

equilibria shrinks as the speed of learning increases. Taken together, these results imply that there

are three possibilities: (i) if learning is slow, there is a large set of pooling equilibria, almost all (or

all) of which fail the Intuitive Criterion; (ii) if learning is fast, pooling equilibria would survive the

Intuitive Criterion, but the set of such equilibria is small; and (iii) for intermediate values of the speed

of learning, there exists a sizeable set of pooling equilibria which survive the Intuitive Criterion.

This qualitative classification can be made more precise by assuming that the log of the derivative

of c(p, e) with respect to e has (strictly) decreasing differences in (p, e) or, in other words, that ce(p, e)

is (strictly) log-submodular:27

ce(ph, e′′)

ce(ph, e′)
>

ce(pl, e
′′)

ce(pl, e′)
, whenever e′′ > e′.

Proposition 9. Let ce be strictly log-submodular, and consider any value function with strong learning.

Let ep(s) be as in Proposition 4. Then, there exists an s∗(0) > 0 and an s > s∗(0) such that

(a) For all s ∈ [0, s∗(0)[, all pooling equilibria fail the Intuitive Criterion.

(b) For all s ∈ [s∗(0), s[, there exists ẽ(s), strictly decreasing in s, such that (i) ẽ(s) < ep(s), (ii) all

pooling equilibria with education level ep ∈ [0, ẽ(s)] survive the Intuitive Criterion, and (iii) all

pooling equilibria with education level ep ∈]ẽ(s), ep(s)] fail the Intuitive Criterion.

27 This assumption might seem restrictive but it is actually satisfied by the functions commonly used to illustrate the

single crossing property. Textbook examples of cost functions usually exhibit log-linear marginal costs which, as stated

at the end of Proposition 9, yields an even simpler division of the parameter space.
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(c) For all s ≥ s, all pooling equilibria survive the Intuitive Criterion.

If ce is log-linear, the result holds with s∗(0) = s, i.e. case (b) cannot occur.

This result is illustrated in Figure 3. Whereas the statement in Proposition 8 is local, assuming

log-submodularity allows for a global characterization of the region where the Intuitive Criterion bites.

Log-submodularity is more stringent than the single crossing property because it implies that marginal

educational costs diverge. If that property were not satisfied, an increase in the level of education

could restore the stability of some pooling equilibria. Hence, when ce(p, e) is not log-submodular,

equilibrium stability does not always divide the (s, e) space into two non-overlapping regions.
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Figure 3: Graphical interpretation of Proposition 9. A pooling equilibrium with education level e

exists if and only if e ≤ e(s). It satisfies the Intuitive Criterion if and only if e ≤ ẽ(s). Parameters:

r = 0.2, pl = 0.5, ph = 1, µ0 = 0.5 and c(p, e) = exp(e/p) − 1.

A comment on mixed-strategy equilibria. In Spence’s model, all mixed-strategy equilibria fail

the Intuitive Criterion. Essentially, the reason is that any such equilibrium involves one (and, in

Spence’s model, only one) pooling education level on which an argument analogous to that used to

discard pooling equilibria can be based.
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In our case, it is not difficult to see that the same argument which shows that pooling equilibria

might survive the Intuitive Criterion will also allow some mixed equilibria to be stable. For instance,

suppose low types do not randomize at all. In such an equilibrum, solely two education levels are

used in equilibrium: A “pooling” one (ep), and a higher (eh > ep) chosen only by high types. Such

equilibria will behave similarly to pooling ones, e.g. if eh is relatively close to ep.

However, it is also possible to show that more complex mixed-strategy equilibria might survive the

Intuitive Criterion. Consider a mixed strategy equilibrium with nonempty set of pooling education

levels Ep, and suppose, for the sake of simplicity, that this equilibrium also involves an education

level el = 0 being chosen by low types only. This implies that the equilibrium payoff of low types is

simply pl/r − c(pl, 0). As in Proposition 6, any e > eh is equilibrium-dominated for the workers of

low productivity. This also implies that no such equilibrium level might be chosen by the low types

in equilibrium, i.e. ep < eh for all ep ∈ Ep.

Fix some ep ∈ Ep, and let µ = µ(ep). By indifference of the low types we obtain

pl

r
− c(pl, 0) = v(pl, µ) − c(pl, ep) ,

and the equilibrium payoff of the high types is v(ph, µ) − c(ph, ep). Suppose, for the sake of the

argument, that a choice of the Riley education level eh would result in the industry setting beliefs of

µ(eh) = 1. Then, the high types would obtain payoff

ph

r
− c(ph, eh) >

ph

r
−

(
c(pl, eh) − c(pl, ep)

)
− c(ph, ep)

=
ph

r
− pl

r
+ v(pl, µ) + c(pl, 0) − c(pl, eh) − c(ph, ep) = v(pl, µ) − c(ph, ep) ,

where the first inequality follows from the single crossing property, the second one from the low types’

indifference condition above, and the last one from the definition of eh in Proposition 3. For the model

without learning, v(pl, µ) = v(ph, µ) and one can conclude that education levels close to but higher

than the Riley one are equilibrium-dominated for low types and result in a strict gain for high types,

thereby leading to a failure of the Intuitive Criterion. This is not true anymore with strong learning,

because v(pl, µ) < v(ph, µ). For particular value functions and particular parameter values, also such

equilibria might survive the Intuitive Criterion.

It might even be the case that equilibria with multiple pooling (i.e. where both types randomize

among at least two different education levels, i.e. Ep contains at least two elements) survive the

Intuitive Criterion. To see this, consider the multiple pooling equilibrium exhibited in Section 4.2,

where low types randomize among e0 = 0 and two positive education levels e1 and e2 > e1, while high

types randomize among e1 and e2. As in the case of pooling equilibria, it is easy to see that such
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an equilibrium fails the Intuitive Criterion if and only if there exists an education level e > e2 which

is equilibrium-dominated for the low types but would be strictly profitable for high types if industry

reacts with beliefs µ(e) = 1.28 For this example, equilibrium dominance for the low types reduces to

10

11
=

pl

r
− c(pl, 0) >

ph

r
− c(pl, e) =

20

11
− e ,

and a deviation to e would be strictly profitable for the high types if and only if

1.0574 ∼= 977

924
= v(ph, µ(e2)) − c(ph, e2) <

ph

r
− c(ph, e) =

20

11
− 9

10
e .

The first condition yields e > 10
11 and the second reduces to e < 10

9

[
20
11 − 977

924

] ∼= 0.8453. Since both

are incompatible, it follows that this multiple pooling equilibrium survives the Intuitive Criterion.

Further Equilibrium Refinements. We have focused on the Intuitive Criterion because of its

relevance for Spence’s model. One could also investigate the predictive power of more sophisticated

refinements. This is especially important if one allows for more than two types. Although this task

is beyond the scope of the paper, we offer here some preliminary insights. First, it is straightforward

to check that, even with employer learning, our game is a monotonic signaling game in the sense of

Cho and Sobel (1990). Hence, by Proposition 3.1 in that paper, the three refinements that naturally

come to mind beyond the Intuitive Criterion actually coincide: Universal Divinity (Banks and Sobel

1987), Never a Weak Best Response (NWBR; Kohlberg and Mertens 1986), and criterion D1 (Cho

and Kreps 1987).

Second, one can build examples showing that, for general cost and value functions, those criteria

do not necessarily refine the set of equilibria.29 Rather than embarking in long computations, we will

outline the essential reasoning here. For monotonic signaling games, Cho and Sobel identified a series

of conditions which guarantee that the three criteria mentioned above lead to a unique equilibrium

(See Proposition 4.4 in Cho and Sobel, 1990).30 The only non-technical condition is A4: If p < p′ and

e < e′, then u(e, µ|p) ≤ u(e′, µ′|p) ⇒ u(e, µ|p′) < u(e′, µ′|p′).
In Cho and Sobel’s words, “A4 is crucial to our analysis. It states that if two signal-action pairs

yield the same utility to some type of Sender, and one signal is greater (componentwise) than the

28No education level lower than e2 can be equilibrium-dominated for either type. Further, if an education level e > e2

would be equilibrium-dominated for the high types, it would never pay for the low type to deviate to it.
29Daley and Green (2007) use the D1 criterion to analyze a signaling game with grades that is closely related to

our reports model. Although they rely on a more demanding notion of equilibrium stability, they still need to impose

additional restrictions in order to ensure equilibrium uniqueness. Hence, their analysis concurs with ours in concluding

that forward induction is vulnerable to the introduction of correlated information after the signaling stage.
30Esö and Schummer’s (2008) Vulnerability to Credible Deviations provides an alternative interpretation of this selection

result within the context of monotonic signaling games
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other, then all higher types prefer to send the greater signal.”31 In Spence’s model, this condition is

implied by the single-crossing property, for the wage given an education level is independent of the

type. Employer learning severs the link because lifetime earnings differ across types. Indeed, it is

apparent that applying A4 to a job-market signaling model actually excludes employer learning from

the model. Hence there is a priori no reason to expect refinements like D1, Universal Divinity, or

NWBR to generically restore equilibrium uniqueness in the absence of strong additional restrictions.

There exists a connection between our results and a different kind of equilibrium refinement criteria.

Mailath, Okuno-Fujiwara, and Postlewaite (1993) postulate the Undefeated Criterion as an alternative

to the Intuitive Criterion and argue in favor of pooling equilibria when they Pareto-dominate the Riley

equilibrium. The key argument is that, for some parameter constellations, the pooling equilibrium

with zero education level might Pareto-dominate the Riley equilibrium.32

There is an interesting connection between our results and Pareto dominance as captured by

the Undefeated Criterion. Consider the pooling equilibrium at e = 0. By definition of the Riley

equilibrium education level eh, the low type is indifferent between sending eh in order to obtain the

wage ph and receiving the wage pl at an education level of zero. The payoff at the pooling equilibrium

with e = 0 is strictly larger than the latter and so the Riley signal eh is always equilibrium-dominated

for the low type. Then, if any pooling equilibrium survives the Intuitive Criterion, so does the pooling

equilibrium with e = 0. In other words, the payoff of the high types at the pooling equilibrium with

e = 0 must be weakly better than at the Riley equilibrium (else the former would fail the Intuitive

Criterion). The payoff of the low types is always strictly better. It follows that the pooling equilibrium

with e = 0 Pareto-dominates the Riley equilibrium. Repeating the argument for pooling equilibria

with e close to zero, it can be shown that, if any pooling equilibrium survives the Intuitive Criterion,

the Riley equilibrium is defeated in the sense of Mailath, Okuno-Fujiwara, and Postlewaite (1993).33

31Note that condition A4 excludes from the onset equilibria with multiple pooling.
32The Undefeated Criterion is more involved than Pareto-dominance. Mailath, Okuno-Fujiwara, and Postlewaite

(1993) restrict attention to pure-strategy signaling equilibria. Within this class, an equilibrium (σ′, µ′) is defeated if a

new equilibrium (σ, µ) can be built where a previously unused signal m is used by some types, in such a way that (i)

the new equilibrium is a Pareto-improvement for those types (all of them being weakly better off, and at least one being

strictly better off), and (ii) for some type using m in (σ, µ), the receiver’s out-of-equilibrium belief in (σ′, µ′) that the

sender is of that type on seeing m can not be explained through conditioning on the set of sender types who do use m in

(σ, µ), even allowing for the possibility that indifferent types might have randomized. In the context of Spence’s model,

for certain parameter values the Riley equilibrium is defeated by pooling equilibria with education levels close to zero,

while pooling at zero is undefeated. For other parameter values, the Riley equilibrium is undefeated.
33Observe, however, that any pooling equilibrium with e > 0 is defeated by the pooling equilibrium with e = 0. Hence,

in our framework, there will be defeated equilibria which survive the Intuitive Criterion.
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6 Conclusion

We have analyzed a labor market where a worker’s ability can be revealed either by his education or

by his performance on-the-job. The addition of this realistic feature causes the failure of standard

arguments, such as the selection of the Riley equilibrium via the Intuitive Criterion. Available evidence

on the speed of employer learning suggests that this observation could be highly relevant for applied

work in job market signaling. Our findings are also relevant for empirical research on signaling theory.

Given the existence and stability of multiple pooling outcomes when learning is efficient, tests based

on the properties of separating equilibria are likely to be too restrictive.34

From a game-theoretic standpoint, an interesting avenue for future research would be to investigate

the relevance of more sophisticated equilibrium refinements. As argued above, however, forward-

looking refinements beyond the Intuitive Criterion might not be entirely suitable for signaling models

with receiver learning, which raises a number of theoretical questions: In which special classes of

games could a uniqueness result be restored? How can existing refinements be further adapted to a

context with learning on the receiver’s side?

Another avenue for future research concerns the learning process itself, whose characteristics can

differ from one specific model (value function) to another. The general model presented in this

paper abstracts from prevalent features of labor markets. Among other simplifications, it ignores the

importance of match-specific uncertainty. This additional source of noise hampers signal extraction

and is thus likely to expand the parameter space where the Intuitive Criterion bites. Another implicit

premise of our analysis is that wages are a function of current beliefs. This is no longer true when

employers can commit to employment contracts. Changing the perspective, it would be interesting to

see whether commitment reinforces the informativeness of education signals.

Such extensions would provide a more realistic description of how signaling operates in labor

markets. Our basic findings, however, apply to any signaling environment beyond the particular job-

market model we have focused on. This suggests plenty of scope for further research on the interactions

between learning and signaling.

APPENDIX

34Empirical tests based on structural models have relied on Informational equilibria (Riley, 1979a; Riley, 1979b;

Kaymak, 2006) rather than Perfect Bayesian equilibria. Proposition 5 may help providing such tests with a game

theoretic foundation because Informational equilibria can be observationally similar to the equilibria with multiple

pooling. See also the working paper version of this article for new results on the ambiguity of the relationship between

the speed of learning and the separating level of education when information is not purely asymmetric.
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Proof of Proposition 1:

The wage is a linear function of current belief given by w(µ) = µ(ph − pl) + pl. Hence, the value

function reads

v(p, µ|r) =
pl

r
+

ph − pl

1 + r

(
µ +

E[µ′|p, µ]

r

)
.

The boundary conditions in P1 follow from E[µ′|p, µ] = µ when µ ∈ {0, 1}. To establish the ranking

of the value functions it is sufficient to show that E[µ′|pl, µ] < µ < E[µ′|ph, µ] for all µ ∈ (0, 1). We

start by considering the first inequality. Let Λ ≡ µ/(1 − µ) and X denote the output realization in

period 1. Bayes rule implies that Λ′ (X) = Λ [gh(X)/gl(X)] so that

E[Λ′|pl,Λ] = Λ

∫ (
gh(X)

gl(X)

)
gl(X)dX = Λ .

Given that Λ is a convex function of µ, Jensen’s inequality yields E[µ′|pl, µ] < µ. A similar reasoning

using the converse transformation Λ̃ ≡ (1 − µ)/µ yields E[µ′|ph, µ] > µ. �

Proof of Proposition 2:

The wage does not directly depend on the worker’s type, but solely on the current belief ratio θ.

It is equal to the expected output E[p|θ] = (ph − pl)
(

θ
1+θ

)
+ pl.

For a low ability worker, dθt = θtsdZt and thus the asset value solves the following Hamilton-

Jacobi-Bellman equation

rv (pl, θ) − 1

2
(θs)2 v′′ (pl, θ) = (ph − pl)

(
θ

1 + θ

)
+ pl ,

which is a second order non-homogeneous ODE with non-constant coefficients. The homogeneous

problem satisfies an Euler equation35 whose solution reads

vH (pl, θ) = C1lθ
α−

+ C2lθ
α+

,

where α− and α+ are the negative and positive roots of the quadratic equation

α (α − 1)
s2

2
− r = 0 .

Thus α− = 1
2(1 − ∆) and α+ = 1

2(1 + ∆) with ∆ = 1
s

√
s2 + 8r. Notice that α+ − α− = ∆ and

α+ + α− = 1.

35Euler equations are second order homogeneous ODE of the form βv(θ) + αθv′(θ) + θ2v′′(θ) = 0, for given constants

β and α. They admit a closed form solution as described in e.g. Polyanin and Zaitsev (2003).
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To solve for the non-homogeneous equation we use the method of variations of parameters. The

non-homogeneous term is composed of a non-linear function of θ plus a constant term. Thus we can

assume that the particular solution is of the form

vNH (pl, θ) =
[
y1 (θ) θα−

+ y2 (θ) θα+
]

+
pl

r
.

Standard derivations yield the system of equations




θα−
θα+

α−θα−−1 α+θα+−1







y′1 (θ)

y′2 (θ)


 =




0

− 2σ
(1+θ)θs


 .

Given that the Wronskian of the two linearly independent solutions is

θα−

α+θα+−1 − θα+

α−θα−−1 = α+ − α− = ∆ ,

we have

y1 (θ) =
2σ

s∆

∫
1

(1 + x)xα− dx and y2 (θ) =
2σ

s∆

∫
1

(1 + x) xα+
dx .

Thus the general form of the particular solution reads

vNH (pl, θ) =
2σ

s∆

(
θα−

∫
1

(1 + x)xα− dx + θα+

∫
1

(1 + x) xα+
dx

)
+

pl

r
. (6)

The bounds of integration and constants C1l and C2l of the homogeneous solution are pinned down

by the boundary conditions

v (pl, θ) −−−→
θ→0

pl

r
and v (pl, θ) −−−→

θ→∞

ph

r
. (7)

Let us first consider the homogeneous solution. Given that θα− → ∞ as θ ↓ 0, the first boundary

condition can be satisfied if and only if C1l equals zero. Similarly, because θα+ → ∞ as θ ↑ ∞, the

second boundary condition allows us to set C2l equal to zero. All that remains is to determine the

integration bounds in equation (6). Consider the following function

v (pl, θ) =
2σ

s∆

(
θα−

∫ θ

0

1

(1 + x)xα− dx + θα+

∫ ∞

θ

1

(1 + x) xα+
dx

)
+

pl

r
. (8)

Let us examine first the limit when θ ↓ 0. Given that θα− → ∞ and
∫ θ

0 [(1 + x)xα−
]−1dx →

0 as θ ↓ 0, we can apply l’Hôpital’s rule to determine the limit. Straightforward calculations

show that θα− ∫ θ

0 [(1 + x)xα−
]−1dx → −θ/[(1 + θ)α−] → 0 as θ ↓ 0. A similar argument yields
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θα+ ∫ ∞
θ

[(1 + x) xα+

]−1dx → θ/[(1 + θ)α+] → 0 as θ ↓ 0.36 Hence, (8) satisfies the first boundary

condition in (7). Now, consider the limit when θ ↑ ∞. We can again use l’Hôpital’s rule because

θα− → 0 and
∫ θ

0 [(1 + x)xα−
]−1dx → ∞ as θ ↑ ∞, so that θα− ∫ θ

0 [(1 + x) xα−
]−1dx → −1/α− as

θ ↑ ∞. Similarly, we obtain θα+ ∫ ∞
θ

[(1 + x)xα+

]−1dx → 1/α+ as θ ↑ ∞. Thus we have

lim
θ→∞

v (pl, θ) =
2σ

s∆

(
1

−α−
+

1

α+

)
+

pl

r
=

2σ

s

( −1

α−α+

)
+

pl

r
=

ph

r
,

where the last equality follows from α−α+ = −2r/s2. Hence, we have established that (8) also satisfies

the second boundary condition in (7), which completes the derivation of v(pl, θ).

The asset value of the high type is derived similarly. For a high ability worker, dθt = θts (sdt + dZt)

and thus the asset value solves

rv (ph, θ) − θs2v′ (ph, θ) − 1

2
(θs)2 v′′ (ph, θ) = (ph − pl)

(
θ

1 + θ

)
+ pl .

The homogeneous solution reads

vH (ph, θ) = C1hθγ−

+ C2hθγ+

,

where γ− and γ+ are the negative and positive roots of the quadratic equation

γ (γ + 1)
s2

2
− r = 0 ,

so that γ− = 1
2(−1 − ∆) and γ+ = 1

2 (−1 + ∆). The non-homogeneous solution is of the form

vNH (ph, θ) =
[
z1 (θ) θγ−

+ z2 (θ) θγ+
]

+
pl

r
,

where the functions z1 (θ) and z2 (θ) satisfy




θγ−
θγ+

γ−θγ−−1 γ+θγ+−1







z′1 (θ)

z′2 (θ)


 =




0

− 2σ
(1+θ)θs


 .

Following the same steps as before yields the solution in Proposition 2.

We now show that the value function obtained above exhibits strong learning. We establish each

property in turn.

36Notice that
R ∞

θ
[(1 + x) xα+

]−1dx <
R ∞

θ
x−α+−1dx = θ−α+

/α+. Thus
R ∞

θ
[(1 + x)xα+

]−1dx is bounded for all θ > 0

and the asset equation is well defined.
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P1. This property is most easily established reversing the change of variable from θt to µt

(i) Low ability worker : dµt = µt (1 − µt) s (−sµtdt + dZt) , (9)

(ii) High ability worker : dµt = µt (1 − µt) s (s (1 − µt) dt + dZt) . (10)

By definition

v (pi, µt) = E

[∫ +∞

t

e−r(τ−t)w(µτ )dτ

∣∣∣∣ pi, µt

]

=

∫ +∞

t

e−r(τ−t)E [w(µτ )|pi, µt] dτ , for all µt ∈ (0, 1) and i ∈ {l, h} , (11)

where the second equality follows from Fubini’s theorem. When the worker is of the high type (pi = ph),

we know from (10) that µt has a positive deterministic trend: µt (1 − µt)
2 s2. As w (µt) = µt(ph−pl)+pl

is a linear function of µt, it follows that E [w(µτ )|ph, µt] > w(µt) for all τ > t, and so v (ph, µt) >

w(µt)/r. Similarly, condition (9) shows that µt has a negative deterministic trend when the worker

is of the low type, hence v (pl, µt) < w(µt)/r. Finally, notice that when µt goes to zero or one, its

stochastic component vanishes which provides us with the two boundary conditions.

P2. Differentiating (11) with respect to s yields

∂v (pi, µt)

∂s
= (ph − pl)

∫ +∞

t

e−r(τ−t) ∂E [µτ |pi, µt]

∂s
dτ , for all µt ∈ (0, 1) and i ∈ {l, h} .

It is therefore sufficient to prove that ∂E [µτ |pi, µt] /∂s is positive when pi = ph and negative when

pi = pl. This follows from (9) and (10) as beliefs exhibit a negative trend for low types and a positive

trend for high types, both of them being increasing in absolute values with respect to s.

P3. The limit condition as s → 0 is satisfied because both deterministic and stochastic terms in (9)

and (10) converge to 0. Accordingly, beliefs remain constant, i.e. lims→0 E [µτ |pi, µt] = µt for i ∈ {l, h}.
To establish the limit condition as s → ∞, let us focus first on high types. Notice that the belief ratio

θt is a geometric Brownian motion and so θτ (Z|ph, θt) = θt exp
(

s2

2 (τ − t) + sZ
)
, where Z is normally

distributed with mean 0 and variance σ2(τ − t). Given that µ(θ) = θ/(1+ θ), we have: µτ (Z|ph, µt) =[
1 − µt + µt exp

(
− s2

2 (τ − t) − sZ
)]−1

. Hence, for all ε > 0 and Z, there exists a signal/noise ratio

s(ε, Z) such that 1 − µτ (Z|ph,mut) < ε for all s > s(ε, Z). It follows that lims→∞ E [µτ |ph, µt] = 1

which in turn implies that lims→∞ v(µ|ph) = ph/r. One can establish in a similar fashion that

lims→∞ E [µτ |pl, µt] = 0 because µτ (Z|pl, µt) =
[
1 − µt + µt exp

(
s2

2 (τ − t) − sZ
)]−1

. �

31



Proof of Proposition 3:

In any separating equilibrium, el = 0. For, if el > 0, signaling will never lead to a wage below pl/r

(by P1) but c(el, pl) > c(0, pl) because costs are strictly increasing in the level of education.

In a separating equilibrium, each type must prefer its own education level to mimicking that of

the other type. This leads to the inequalities

c(pl, eh) − c(pl, 0) ≥
1

r
(ph − pl) ≥ c(ph, eh) − c(ph, 0) .

Given that cost functions are strictly increasing in e, there exists a unique eh > 0 such that the

first inequality is fulfilled if and only if eh ≥ eh, and a unique eh > 0 such that the second inequality

is fulfilled if and only if eh ≤ eh. By continuity, the condition given in the proposition uniquely

determines those two education levels. Further, by the single crossing property

c(pl, eh) − c(pl, 0) > c(ph, eh) − c(ph, 0) ,

so that eh > eh. This shows that the set of equilibrium candidates is not empty and that all separating

equilibria fulfill the specified conditions.

It remains to show that any pair (el, eh) fulfilling those conditions can be sustained in a separating

equilibrium. For that, it suffices to specify the out-of-equilibrium beliefs. It is straightforward to check

that the beliefs given by e.g µ(e) = 1 if e ≥ eh and µ(e) = 0 if e < eh sustain such a profile. �

Proof of Proposition 4:

We first prove that the given education levels can be sustained as a pooling equilibrium by the

particular beliefs µ(ep) = µ0 and µ(e) = 0 for all e 6= ep. These beliefs together with ep = 0 lead to

pooling because any deviation yields a strictly larger cost and a strictly lower value (recall that the

value function is strictly increasing in µ). Consider ep > 0: Under the stated beliefs, selecting e = 0

is always preferred by both types to selecting any other e /∈ {0, ep}, for both yield the same lifetime

income but the cost of e = 0 is strictly smaller. Hence it suffices to check that neither of the two types

has an incentive to deviate from ep to e = 0. This yields the conditions

c(pl, ep) − c(pl, 0) ≤ v(pl, µ0) −
pl

r
and c(ph, ep) − c(ph, 0) ≤ v(ph, µ0) −

pl

r
.

By the single crossing property, c(ph, ep) − c(ph, 0) < c(pl, ep) − c(pl, 0). Weak learning, however,

implies that v(ph, µ0) ≥ v(pl, µ0) and so the first condition implies the second one. Given that costs

are strictly increasing in education, there exists a unique ep > 0 such that the first inequality is fulfilled

if and only if ep ≤ ep. By continuity, that education level is uniquely determined by the condition

given in the statement. It is straightforward to show that an education level can be sustained as
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a pooling equilibrium under some belief system if and only if it can be sustained under the beliefs

specified above. Further, by P1

v(pl, µ0) − pl ≤ w(µ0) − pl = µ0(ph − pl) < ph − pl,

which, recalling the definition of eh in Proposition 3, implies that ep < eh.

Last, assume strong learning. To see that the set of pooling equilibria shrinks as the speed of

learning increases, simply notice that v(pl, µ0|r, s) is strictly decreasing in s by P2, hence the conclusion

follows from the equation defining ep. The fact that lims→∞ ep = 0 under strong learning follows from

P3, i.e. the requirement that lims→∞ v(pl, µ|r, s) = pl/r. �

Proof of Proposition 5:

Suppose that there are at least two education levels in the support of the low types’ equilibrium

strategy, e and e′ with e < e′. As both must be optimal, it follows that

v(pl, µ(e)) − c(pl, e) = v(pl, µ(e′)) − c(pl, e
′) ,

which, since c(pl, e) < c(pl, e
′), implies v(pl, µ(e)) < v(pl, µ(e′)). Hence, µ(e) < µ(e′) (recall that v is

strictly increasing in µ), proving that µ needs to be strictly increasing over chosen education levels.

This is only possible if µ(e′) > 0, hence in equilibrium e′ must also be in the support of the high

types’ strategy. It follows that there exist at most one education level chosen only by low types, and it

must be the lowest one in the support of their strategy. A symmetric argument holds for high types,

thereby establishing (i) and (ii). The fact that el = 0 follows as in Proposition 3.

Suppose that also e is in the support of the high types’ strategy. Then

v(ph, µ(e)) − c(ph, e) = v(ph, µ(e′)) − c(ph, e′).

By the single crossing property, we obtain

v(ph, µ(e′)) − v(ph, µ(e)) = c(ph, e′) − c(ph, e) < c(pl, e
′) − c(pl, e) = v(pl, µ(e′)) − v(pl, µ(e)).

The strict inequality leads to a contradiction in Spence’s model because v(ph, µ) = v(pl, µ). One can

then conclude that low types randomize among at most two education levels, where the lower one

is only chosen by them. Symmetrically, high types randomize among at most two education levels,

where the higher one is only chosen by them.

For other value functions, the last equality does not lead to a contradiction. The example in the

main text shows that equilibria where Ep is not a singleton are indeed possible. �
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Proof of Proposition 8:

By continuity, there exists ε > 0 small enough that

c(pl, e) − c(pl, ep) <
1

2

ph − pl

r
∀ e ∈ (ep, ep + ε) .

Let δ = c(ph, ep + ε) − c(ph, ep) > 0, so that c(ph, e) − c(ph, ep) > δ for all e > ep + ε. For a value

function with strong learning,

lim
s→∞

v(pl, µ|r, s) =
pl

r
and lim

s→∞
v(ph, µ|r, s) =

ph

r
.

Hence there exists s∗ such that, for all s ≥ s∗,

ph

r
− v(pl, µ|r, s) >

1

2

ph − pl

r
and

ph

r
− v(ph, µ|r, s) <

1

2
δ .

It follows that, for s ≥ s∗,

c(pl, e) − c(pl, ep) <
ph

r
− v(pl, µ|r, s) ∀ e ∈ (ep, ep + ε) ,

i.e. (ED) fails, implying that e∗(ep) > ep + ε, and

c(ph, e) − c(ph, ep) >
ph

r
− v(ph, µ|r, s) ∀ e > ep + ε ,

i.e. (PD) fails, implying that e∗∗(ep) < ep+ε. We conclude that e∗∗(ep) < e∗(ep), or that the considered

pooling equilibrium survives the Intuitive Criterion. �

Proof of Proposition 9:

In this proof, we make the dependence of all involved quantities on s explicit. Recall from

Proposition 4 that pooling equilibria correspond to education levels in [0, ep(s)] and that, under strong

learning, ep(s) is strictly decreasing in s and lims→∞ ep(s) = 0.

Recall also conditions (ED) and (PD). A pooling equilibrium with education level ep fulfills the

Intuitive Criterion if and only if condition (PD) fails at e = e∗(ep), where the latter education level is

defined by taking equality in condition (ED).

Define

Ih(ep|s) = c(ph, ep) − c(ph, e∗(ep)) +
ph

r
− v(ph, µ0|r, s) .

It follows that the Intuitive Criterion fails at ep if and only if Ih(ep|s) > 0.

Step 1. Ih is strictly increasing in ep. Hence, for a given speed of learning s, if the Intuitive criterion

fails at ep, it also fails at all larger education levels.
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To prove this, differentiate the equality defining e∗(ep) to obtain

∂e∗(ep|s)
∂ep

=
ce(pl, ep)

ce(pl, e∗(ep))
> 0 .

Now, differentiating Ih with respect to ep yields

∂Ih(ep|s)
∂ep

= ce(ph, ep) − ce(ph, e∗(ep)) ·
∂e∗(ep|s)

∂ep

=
ce(ph, ep)ce(pl, e

∗(ep)) − ce(ph, e∗(ep))ce(pl, ep)

ce(pl, e∗(ep))
> 0 ,

where the last inequality follows from log-submodularity.

Step 2. There exists s∗(0) such that all pooling equilibria fail the Intuitive Criterion for s < s∗(0),

and ep = 0 survives it for s ≥ s∗(0).

As in the proof of Proposition 8, we can find a speed of learning s∗(0) such that ep = 0 survives

the Intuitive Criterion for s ≥ s∗(0) and fails it for s < s∗(0). In the latter case, the conclusion follows

from Step 1.

Step 3. Let s ≥ s∗(0). There exists a unique education level ẽ(s) such that Ih(ẽ(s)) = 0 and

Ih(ep) > 0 for all ep > ẽ(s). Further, ẽ(s) is strictly increasing in s and lims→∞ ẽ(s) = +∞.

It follows from Step 1 that either Ih(ep) > 0 for all ep, and hence all pooling equilibria fail the

Intuitive Criterion, or there exists a unique education level ẽ(s) as stated. By Step 2, the former case

can only occur if s < s∗(0).

Notice that

∂Ih(ep|s)
∂s

= −ce(ph, e∗(ep|s)) ·
∂e∗(ep|s)

∂s
− ∂v(ph, µ0|r, s)

∂s
< 0 ,

where the inequality follows from P2 and the strictly decreasing profile of e∗(ep|s) in s (see equality

in condition (ED)).

Differentiating Ih(ẽ(s)) = 0 with respect to s now yields

∂Ih(ep|s)
∂ep

∂ẽ(s)

∂s
+

∂Ih(ep|s)
∂s

= 0

which, since
∂Ih(ep|s)

∂ep
> 0 and

∂Ih(ep|s)
∂s

< 0, implies ∂ee(s)
∂s

> 0.

It follows that ẽ(s) is a strictly increasing function. Hence, either lims→∞ ẽ(s) = +∞ as claimed,

or it has an upper bound and hence (by virtue of being increasing) a finite limit L. Suppose the latter

case would hold. Recall that e∗(ep) > ep for all ep. As Ih(ẽ(s)|s) = 0, from the definition of Ih we

obtain that

lim
s→∞

c(ph, e∗(s̃)) − c(ph, ẽ(s)) = 0 ,
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because lims→∞ v(ph, µ|r, s) = ph

r
in the strong learning case. This is a contradiction with e∗(L) > L.

Step 4. For s ≥ s∗(0), the rest of the proof follows.

Recapitulating, ep yields a pooling equilibrium if and only if ep ∈ [0, ep(s)], and in that case survives

the Intuitive Criterion if and only if ep ∈ [0, ẽ(s)]. Given that ep(s) is strictly decreasing and converges

to 0 as s → ∞, and ẽ(s) is strictly increasing and diverges to infinity (and ẽ(s∗(0)) = 0 < ep(s
∗(0))),

it follows that they must intersect at a unique speed of learning s such that part (b) holds below s

and part (c) holds above it.

It remains to consider the case where ce is log-linear. Retracing our steps, we can see from the

computations in Step 1 that, in this case,
∂Ih

∂ep
= 0, while from Step 2 we still see that

∂Ih

∂s
< 0. It

follows that, for a fixed s, either all pooling equilibria fail the Intuitive criterion, or all survive it (the

locus of s̃ becomes vertical). �
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