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Abstract

In liberalized electricity markets strategic firms compete in an environment char-
acterized by fluctuating demand and non–storability of electricity. While spot market
design under those conditions by now is well understood, a rigorous analysis of invest-
ment incentives is still missing. Existing models, as the peak–load–pricing approach,
analyze welfare optimal investment and find that optimal investment is higher with
more competitive spot markets. In this paper we propose a multistage game with
strategic firms that anticipate competition on many consecutive spot markets with
fluctuating (and possibly uncertain) demand. We study how the degree of spot mar-
ket competition affects investment incentives and welfare, and provide an application
of the model to electricity market data. Our results show that more competitive spot
market prices decrease investment incentives of strategic firms and may even lead to
a welfare reduction. Our analysis demonstrates that the Peak Load Pricing approach
cannot be used to ”approximate” investment incentives of strategic firms since it
does not correctly capture the impact of spot market competition on the investment
incentives of strategic players.
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1 Introduction

Incentives to invest in generation capacity have been heavily debated in the recent literature

on electricity market regulation. Many authors suspect that there is a trade–off between

low spot market prices and proper investment incentives if firms behave strategically. As

Paul Joskow (2008) puts it, ”policymakers in many countries are concerned that competi-

tive wholesale markets for electricity do not provide adequate incentives for investment in

sufficient quantities of generating capacity.”

A thorough analysis of investment incentives in electricity markets, however, is still

missing — but it is crucial for regulatory policy and electricity market design. In this paper

we provide a model to analyze investment incentives of strategic firms prior to spot market

competition. We illustrate how different spot market rules affect investment incentives and

welfare, and provide an application of the model to electricity market data.

Let us first briefly illustrate why existing models do not capture investment incentives in

liberalized elecricity markets accurately. First, the seminal result of Kreps and Scheinkman

(1983) (in a nutshell, if firms can choose their capacities prior to their production decision,

price and quantity competition lead to equivalent market outcomes) does not apply to the

case of electricity markets, for the following reason. Electricity is not storable and supply

has to match (fluctuating) demand at any point in time.1 Thus, the analysis of investment

incentives has to account for the fact that almost always either a fraction of capacity will

run idle or capacity is not sufficient. Capacity constraints only affect prices in the latter

case, whereas if capacity is sufficient spot market rules determine the price.2 Consequently,

in the presence of demand fluctuations it is just impossible to predetermine spot market

outcomes in every state of the world by a capacity choice.

For the case of regulated monopoly, the peak load pricing literature already analyzed

the investment problem. Since the liberalization of electricity markets all over the world,

however, strategic firms have interacted on those markets within a regulatory framework

that affects production and investment incentives. Still, in the applied literature on elec-

tricity markets, the peak–load–pricing approach is often used in order to ”approximate”

investment incentives of strategic firms. Our paper will show, however, that such an ap-

proximation yields exactly the wrong policy conclusions: While welfare optimal investment

(as derived by the peak load pricing approach) is higher if spot markets are more compet-

1Notice that the type of questions we analyze (the main feature is non-storability of the good) is
relevant also for a series of other markets. Examples are oil and gas extraction, capacity choices of hotels
and hospitals (e.g. number of beds), or capacity choices of airlines (number of planes), etc. Our main
motivation for this paper was, however, to get a deeper understanding investment incentives in electricity
markets, an issue which is not yet well understood for liberalized electricity markets.

2And, moreover, spot market rules determine when exactly the capacity bound is met.
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itive, strategic firms invest less if they expect a more competitive spot market outcome.

The reason is that strategic firms will sidestep a tight spot market regulation by lower

investment which allows them to make high profits when prices are demand-driven because

of insufficient capacity.3

As we have argued, a proper understanding of investment incentives of strategic firms

is crucial for the evaluation of different electricity wholesale market designs. However,

studying investment incentives of strategic firms that have to decide on their capacities

prior to competing on many consecutive spot markets requires analysis of a complicated

multistage game. In our approach we assume that investment takes place at a first stage

prior to competition at the spot markets. Firms anticipate fluctuating spot market demand

(and also production cost) and, moreover, upon investment they might be uncertain about

the precise pattern of such fluctuations. When firms compete at the spot markets (day

ahead at the power exchange) it seems plausible to assume that they have pretty good

information on demand and production cost (i.e. uncertainty unraveled). A crucial choice

in our framework is how to model short run spot market competition. We therefore discuss

this issue in some detail in the following paragraph.

Actually, most of the research on electricity markets has focused on short run perfor-

mance. As Joskow (2008) states, ”we now understand how to design wholesale electricity

markets that work well in the short run.” One of the most common approaches to think

about competition at electricity spot markets is based on the concept of supply function

competition developed by Klemperer and Meyer (1989) and applied to the case of elec-

tricity markets by Green and Newbery (1992). The range of equilibria generated by this

approach is bounded below by the competitive market outcome and above by the Cournot

solution.4 Which of the equilibria is being played in a particular market likely depends on

specific market rules and institutions. As Borenstein et al. (2008) put it: ”To the extent

that market rules and local regulatory differences influence market outcomes by helping

determine which of the many possible equilibria arise, these impacts can be thought of as

placing the market price within these bounds.” In a dynamic investment game a continuum

of equilibria at the production stage implies very imprecise overall equilibrium predictions

ranging up to the collusive outcome (folk theorems). In order to obtain meaningful solu-

3Notice that fluctuations of either demand or supply do not pose much problems in the case of storable
output. Then capacity has to be sufficient to serve total demand in all markets on average, a situation
which can well be captured by well known frameworks of deterministic capacity choice such as the prominent
contribution by Kreps and Scheinkman and its follow up literature. It is crucial to notice, however, that
those findings do not apply to the case of non-storable products. In this case exact demand patterns are
crucial for investment incentives.

4Especially when uncertainty regarding demand at each single spot market is small, the Cournot and
the competitive solution are indeed the lowest and the highest equilibrium.
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tions for the strategic investment game we will thus limit our analysis to those two extreme

cases, the Cournot and the competitive solution.5 This approach will allow us to address

the central questions of this paper:

1. How does spot market design influence firms’ investment decisions?

2. And (how) does this answer depend on the precise modeling of investment choices

(strategic investment versus optimal investment as modeled in the peak load pricing

literature)?

Let us briefly summarize our results. We establish existence and (where possible) also

uniqueness of equilibrium of the strategic investment game for both regimes of spot market

competition (Cournot and competitive prices). We then show that the lower bound of the

above mentioned range of spot market equilibria (the case of perfect competition, which is

clearly more desirable from a short run perspective) is potentially less desirable in the long

run. A competitive spot market leads to strictly lower investment by strategic firms and

might even lead to a welfare reduction. In a model with free entry (where firms enter the

market as long as they expect to cover some fixed cost of entry) a competitive spot market

is even less desirable since it gives rise to a lower number of active firms in the market. In

the empirical part of the paper we quantify the effects we identified in the theoretical part

using data of the German electricity market.

We also compare the results we obtain for strategic firms with the results obtained in a

framework where optimal investment is derived, as it is typically done by applied studies on

the investment problem.6 We obtain exactly the opposite result: if firms are not modeled

as strategic players a competitive spot market is more desirable both, from a short run

and from a long run perspective. Our results demonstrate that it is crucial to explicitly

model strategic interaction at the investment stage. Our empirical analysis reveals that the

impact on welfare and capacity level is drastic.

Let us finally review some of the related literature. The traditional investment literature

focused on the case of optimal (instead of strategic) investment decisions. The peak load

pricing literature was initiated by Steiner (1957) and Boiteux (1960) and is extensively

reviewed by Crew and Kleindorfer (1986) and Crew et al. (1995). In a recent contribution

Joskow and Tirole (2007) show how those results can also be extended to the case of

perfectly competitive markets.

5One could additionally consider specifications of the supply function game that yield unique equilibria,
as in Kühn (XXXX) or Holmberg (2008). Those scenarios would yield less investment than the case of
Cournot competition at the spot markets, but more investment than the case of competitive behavior.

6See, for example, Boccard (2009), Bushnell (2005), Cramton and Stoft (2005), or Joskow (2007).
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Two papers have analyzed strategic investment prior to a Cournot spot market. For the

case of a linear duopoly Gabszewicz and Poddar (1997) show existence of a symmetric equi-

librium. Murphy and Smeers (2005) characterize equilibrium investment in the very same

linear duopoly setting, but allow for an asymmetric cost structure of the firms. The rela-

tionship between spot market design and firms’ investment decisions has not been touched

in those contributions, however.

As already mentioned above, there has been an intense debate of the question which

framework is best suited in order to model competition at electricity spot markets. Whereas

Green and Newbery (1992) proposed the supply function approach, an auction model was

proposed by von der Fehr and Harbord (1993). Recently, Reynolds and Wilson (2000),

Fabra and de Frutos (2006), and Fabra, Fehr and de Frutos (2008) have analyzed strate-

gic investment incentives in a duopoly prior to an auction-like spot market with price

competition. They show non-existence of symmetric equilibria (Reynolds and Wilson),

and characterize some of the asymmetric equilibria for the duopoly case (Fabra and co-

authors). It probably remains an unsolved question whether the supply function or the

auction approach models spot market competition more accurately. However, the analy-

sis of investment incentives prior to auction markets seems to be plagued by the lack of

existence results (of symmetric equilibira) and by multiplicity of asymmetric ones. This

makes policy evaluations or an analysis of the relationship of investment incentives and

spot market design rather difficult.

Finally, departing from the perspective of optimal investment, as analyzed in the peak

load pricing literature, towards an analysis of strategic investment behavior requires not

only to account for the quantities that the firms invest, but also strategic timing of invest-

ment decisions may be an important issue. All above mentioned contributions (including

this paper) exogenously fix a point in time when firms make their investment choices and

focus exclusively on capacity levels chosen. In contrast, the ”real option approach” analyzes

the optimal timing of investment. Demand evolves according to a stochastic process (typ-

ically a Brownian motion) and firms decide when to adjust their investment to increased

demand levels. This literature has been initiated by Dixit and Pindyk (1994), and has

been applied to strategic games by Baldursson (1998) or Grenardier (2002). In order to

keep those models tractable, however, the authors typically assume that the entire capacity

is being used for production (the case that firms are unconstrained cannot occur). That

is, by assumption spot markets are not modeled and shifting levels of demand have to be

interpreted as movements of average demand in the long run.

Our paper is organized as follows: In section 2 we state the model. Section 3 contains the

theoretical analysis and results. We consider strategic investment in section 3.1 and welfare

optimal investment in section 3.2. In section 3.3 we provide a comparison of investment
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levels in the scenarios we consider and show that the strategic approach reverts the policy

conclusion. Section 4 contains an empirical analysis, where we also discuss the welfare

implications of spot market regulation. Section 5 concludes.

2 The Model

We analyze an investment game where firms choose capacities anticipating demand and cost

fluctuations, and thereafter make output choices at a series of spot markets. We denote by

q = (q1, . . . , qn) a vector of outputs of the n firms at a spot market, and by Q =
∑n

i=1 qi

total quantity produced at that spot market.

Inverse demand in spot market θ is given by the function P (Q, θ), which depends on

Q ∈ R+, and the random variable θ ∈ R which represents the different demand scenarios.

All firms face the same cost function for each θ ∈ R, which we denote by C(qi, θ). The

random variable θ ∈ R is distributed according to a distribution F (θ), which specifies

relative frequencies of different demand realizations.

Remark 1 (Why a Continuum of Spot Markets?) We choose a continuum of spot

markets, which could be motivated in two different ways: First, firms bid for 8760 hours

each year and installed capacity serves for more than ten years. Thus, a continuum might

be an appropriate approximation. Second, also demand uncertainty might play a role since

firms typically cannot predict all future demand realizations exactly. This scenario would

certainly suggest a continuous framework and is also covered by our analysis.

We introduce the parameter z ≤ 0 as a lower bound on market prices in order to

take into account nonnegativity of prices (z = 0) or disposal cost (z < 0). We denote

the quantity where this lower bound is met by Q(θ).7 The following two assumptions on

demand and cost for each realization of the demand parameter θ ∈ R have to be satisfied

only for quantities 0 ≤ qi ≤ Q < Q(θ).

Assumption 1 (Assumptions at each θ) (i) Inverse demand P (Q, θ) is twice con-

tinuously differentiable8 in Q with Pq(Q, θ) < 0 and Pq(Q, θ) + Pqq(Q, θ)qi < 0.

(ii) C(qi, θ) is twice continuously differentiable in qi with Cq(qi, θ) ≥ 0 and Cqq(qi, θ) ≥ 0.

7In case the lower bound is not binding we can set Q(θ) = ∞. In order to ensure a bounded solution
we then have to assume limQ→∞ P (Q, θ) < Cq(0, θ) for each θ ∈ (−∞,∞].

8Throughout the paper we denote the derivative of a function g(x, y) with respect to the argument x,
by gx(x, y), the second derivative with respect to that argument by gxx(x, y), and the cross derivative by
gxy(x, y).
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Assumption 2 (Monotonicity Assumptions regarding θ) (i) P (Q, θ) and

C(qi, θ) are differentiable in θ, and it holds that Pθ(Q, θ)− Cqθ(qi, θ) > 0.9

(ii) P (Q, θ)qi−C(qi, θ) is (differentiable) strict supermodular in qi and θ, i. e. Pθ(Q, θ)−
Cqθ(qi) + Pqθ(Q, θ)qi > 0.

The situation we want to analyze is captured by the following dynamic investment game.

At the investment stage firms simultaneously build up capacities x = (x1, . . . , xn). Capacity

choices are observed by all firms. Cost of investment K(xi) is the same for all firms and

satisfies

Assumption 3 (Investment Cost) Investment cost K(xi) is twice continuously differ-

entiable, with Kx(xi) ≥ 0 and Kxx(xi) ≥ 0.

Facing the capacity constraints inherited from the investment stage, firms simultane-

ously choose outputs at a sequence of spot markets with fluctuating demand levels. Since

demand in a particular scenario θ is known prior to the output decision, produced quantities

depend on the respective demand scenarios.

Finally, we state firm i’s profit from operating if capacities are given by x and firms

plan to choose feasible10 production schedules q(θ) for all θ ∈ [−∞,∞].

πi (x, q) =

∫ ∞
−∞

[P (Q (θ) , θ) qi (θ)− C (qi (θ) , θ)] dF (θ)−K (xi) . (1)

Throughout the paper we consider only cases where investment is gainful,

i.e.
∞∫
−∞

[P (0, θ) − C(0, θ)]dF (θ) > K(0). Note that if the condition does not hold, no

firm invests in capacity.

3 Results

In this section we analyze the investment game where firms simultaneously invest in capacity

anticipating spot market competition in a series of markets with fluctuating demand. In

9Notice that demand and cost fluctuations in principle can be distinct processes. Then the parameter θ
represents all joint realizations, which have to satisfy assumption 2. This requirement imposes some further
restrictions on the model if cost and demand fluctuations should be considered simultaneously. Consider,
for example, a model with linear demand P (Q, β) = β−bQ and fluctuating but constant marginal cost c(γ).
For ease of exposition let both, β and γ follow a discrete distribution. Now sort all joint realizations (β, γ)
such that β− c(γ) is increasing and index each realization by θ. Observe that the resulting system satisfies
assumption 2 (i) and 2 (ii). Thus, the model can deal simultaneously with cost and demand fluctuations
in the case of linear demand, which we exploit in the empirical part of the paper. In case of non–linear
demand it is more plausible to think about demand and cost fluctuations separately.

10That is, 0 ≤ qi(θ) ≤ xi for all θ ∈ [−∞,∞], i = 1, . . . , n.
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order to be able to assess the impact of market power and of market design on investment

incentives and production, we analyze four different scenarios.

In section 3.1 we consider the case that strategic firms choose profit maximizing invest-

ment levels. In this context we consider two extreme scenarios, the case of anticipation of

high spot market prices (Cournot) as well as the case of competitive pricing (which may

be a result of regulatory intervention11 or just the result of competitive supply function

bidding).

In section 3.2 we analyze the investment game assuming that socially optimal investment

levels are chosen by the firms (i.e. we analyze unstrategic investment choice), and again

consider the case of anticipation of high spot market prices as well as the case of competitive

pricing at the spot market. The latter case coincides with the ”competitive benchmark”

that has been analyzed in the peak load pricing literature. On the one hand, an analysis of

welfare optimal capacity levels yields insights on capacity levels that a social planer would

like to implement. Comparison with strategic capacity choices as analyzed in section 3.1

reveals, moreover, that the policy conclusion is reverted when the analysis does not account

for the incentives of strategic firms at the investment stage.

3.1 Strategic Investment

Consider the market game where firms strategically choose capacities as to maximize prof-

its. Our first theorem shows that the investment game where firms engage in Cournot

competition at the spot markets (SH — Strategic firms, High spot market prices) has a

unique and symmetric equilibrium. If, however, firms anticipate competitive prices at the

spot market (SL — Strategic firms, Low spot market prices), the investment game has

multiple symmetric but no asymmetric equilibria.

Theorem 1 (Strategic Capacity Choice) Suppose firms choose their capacities

strategically.

(SH) If firms anticipate high spot market prices (Cournot competition) at the spot markets,

the investment game has a unique equilibrium which is symmetric.

(SL) Suppose that firms anticipate competitive pricing at the spot markets, and that Cq(q, θ)

is constant in q. Then, there exists at least one symmetric equilibrium, but there may

be more than one. No asymmetric equilibria exist.

11We are aware that regulation down to spot market prices requires a lot of information on the part of
the social planer. Although stylized, however, it allows detailed insights in what happens to investment
incentives should the regulator succeed in implementing competitive prices at the spot market.

8



Total equilibrium investment in scenario SD, D ∈ {H,L}, XSD, solves∫ ∞
θ̃D(XSD)

[
P
(
XSD, θ

)
+ Pq

(
XSD, θ

) XSD

n
− Cq

(
XSD

n
, θ

)]
dF (θ) = Kx

(
XSD

n

)
,

where θ̃D
(
XS
)

is the demand scenario from which on firms are capacity constrained at the

spot market.12

Proof See appendix B �

Let us emphasize some important aspects of our results. First, we could show that

under standard regularity assumptions the investment game has a unique equilibrium if

firms expect Cournot competition at the spot markets. Second, we find that equilibrium

investment can be characterized by a rather intuitive condition. The condition simply says

that marginal profit generated by an additional unit of capacity (at the spot markets) must

equal marginal cost of investment. When calculating the marginal profit generated by an

additional unit of capacity, however, one has to take into account that additional capacity

affects a firm’s profit only in those states of nature where capacity is binding. Thus, only

those spot markets are taken into account where firms are indeed capacity constrained,

i. e. only the interval [θ̃D
(
XSD

)
,∞] is relevant, not the whole domain of θ.

Note that the critical demand scenario θ̃ (from which on firms are capacity constrained)

depends on the degree of market power at the spot markets. If firms strategically withhold

production at the spot market (as under Cournot competition) the critical demand scenario

is higher than in the case where they behave competitively. Observe that actually the

market game at the spot markets enters into the first order condition solely through the

critical demand realization.

If firms anticipate competitive behavior at the spot markets, existence and uniqueness

of a symmetric equilibrium cannot be shown in the general case (part (SL) of the theorem).

Only for constant marginal production cost we obtain existence (but not uniqueness).13 An

immediate insight of this result is that regulatory intervention at the spot market (that

forces prices below the Cournot level) may lead to high strategic uncertainty for the firms.

Later in section 3.3 we will show that, moreover, investment incentives are lower if firms

anticipate competitive prices at the spot market than in the case where they anticipate

Cournot competition.

12I.e. θH(XSH) is implicitly defined by P (XSH , θ̃H) + Pq(XSH , θ̃H)X
SH

n = Cq(X
SH

n , θ̃H) and θL(XSL)
is implicitly defined by P (XSL, θ̃L) = Cq(X

SL

n , θ̃L), respectively.
13The basic problem is that in neither case the profit is quasiconcave, which makes standard analysis

impossible. In the case of linear marginal cost, however, we can exploit recent insights on oligopolistic
competition that makes use of lattice theory (Amir (1996) and Amir and Lambson (2000)). In the general
case (i. e. strictly convex production cost), however, the game cannot be reformulated as a supermodular
game and thus, even those more sophisticated techniques do not help.
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3.2 Optimal Investment

In this section we characterize investment levels that are optimal from a welfare point of

view — again for a Cournot and a competitive spot market market outcome. The analysis is

interesting for two reasons: First, from a comparison with the results of section 3.1 we learn

how a social planer would like to influence the capacity choices of strategic firms. Second,

the analysis reveals that the traditional approach (which does not account for strategic

investment) predicts higher investment prior to competitive spot markets, while strategic

firms actually invest less if the spot market is more competitive.

Optimal investment in cases WH (Welfare optimal investment at High spot market

prices) and WL (Welfare optimal investment at Low spot market prices) is characterized

in the following theorem.

Theorem 2 (Welfare Maximization at Stage One) Welfare maximizing industry

capacity choices are unique and symmetric. Socially optimal capacity in scenario WD,

D ∈ {H,L}, XWD, solves∫ ∞
θ̃D(XWD)

[
P
(
XWD, θ

)
− Cq

(
1

n
XWD, θ

)]
dF (θ) = Kx

(
1

n
XWD

)
, (2)

where θ̃D
(
XWD

)
is the demand scenario from which on firms are capacity constrained at

the spot markets.14

Proof See appendix C �

Note that also the characterization of welfare optimal investment levels is rather intu-

itive. The condition implies that in the welfare optimum capacity should be chosen such

that expected marginal social welfare generated by an additional unit of capacity [LHS of

(2)] should equal marginal cost of investment [RHS of (2)]. Again it is important to notice

that only those scenarios are taken into account where firms are actually constrained given

the scheduled spot market production, that is, over the interval [θ̃D(XWD),∞]. Note that

for a given level of investment, firms are constrained earlier if they behave competitively

at the spot markets, since under Cournot competition they withhold quantity at the spot

markets in order to affect prices. Consequently, additional capacity is used more often and

thus, contributes more to expected marginal welfare if the spot market behavior is more

competitive. This implies that welfare maximizing capacity should be higher if the spot

market is competitive than in case firms play the Cournot outcome. We show this formally

in section 3.3.

14I.e. θH(XWH) is implicitly defined by P (XWH , θ̃H) + Pq(XWH , θ̃H)X
WH

n = Cq(X
WH

n , θ̃H) and
θL(XWL) is implicitly defined by P (XWL, θ̃L) = Cq(X

WL

n , θ̃L), respectively.
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We finally point out that if firms do not act strategically, investment and production

levels coincide with the socially optimal solution, again given the number of firms:

Remark 2 (Non-Strategic Firms) If firms do not behave strategically (i. e. they act as

price takers at the spot markets and ignore their impact on total capacity at the investment

stage), the welfare maximizing market outcome (WL) is implemented.

3.3 Comparison of Market Outcomes for Strategic versus Opti-

mal Investment

In this section we compare equilibrium investment in the scenarios we analyzed in the

previous two sections and discuss how the consideration of strategic (instead of welfare

optimal) investment affects policy conclusions regarding the desirable spot market design.

Our first result shows that the traditional approach (unstrategic investment) predicts higher

investment for a more competitive spot market, while strategic firms would actually invest

less if the spot market outcome is expected to be competitive.

Theorem 3 (Investment Levels) (i) Non-strategic (welfare optimal) investment is

higher if the spot market is more competitive, i. e. XWL ≥ XWH .

(ii) Strategic firms invest less if the spot market is more competitive, i. e. XSL ≤ XSH .

Proof See appendix D �

Let us briefly provide some intuition for our result, using some characteristics of the first

order conditions as stated in theorems 1 and 2. Let us first draw the reader’s attention to the

particular structure of the first order conditions. They all equalize expected marginal profit

or welfare [LHS] with marginal cost of capacity [RHS]. Note that, at the LHS, the objective

at the investment stage (either profit or welfare) is reflected only in the integrand. That is,

we integrate over marginal profit in cases where the firms maximize profits at the investment

stage (SH and SL) and over marginal welfare in cases where welfare is the investment

stage–objective (WL and WH). The scenario at the spot market enters exclusively into

the lower limit of integration, since the outcome of spot market competition affects the

demand scenario from which on firms are constrained given the capacities chosen at the

investment stage. Marginal profits or welfare once firms are constrained are not directly

influenced by the spot market regime, since prices are demand–driven if capacity is at its

bound.

Now consider the optimal capacity choice of strategic firms. If the firms anticipate

Cournot competition at the spot markets, marginal profit generated by additional capacity

is positive in each scenario where the firm is constrained. If firms expect competitive
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behavior at the spot market, however, this is not the case. A firm thus anticipates that it

might be forced to use additional capacity although the marginal profit from using it may

be negative.15 Consequently, additional capacity is less valuable to the firms in the latter

case and investments are lower if the spot market is more competitive.

In contrast, if capacity is chosen as to maximize social welfare, an additional unit of

capacity has a positive impact whenever the spot market price is above marginal cost (which

is always the case). As already mentioned, firms are constrained earlier if spot market

behavior is more competitive. This implies that for any initial capacity level additional

capacity is used more often if the spot market is competitive and therefore generates a

higher increase in social welfare. Optimal investment must thus be higher for a competitive

spot market than for the case of Cournot competition at spot markets.

We have demonstrated above that for any fixed capacity level, additional capacity is

more valuable if welfare maximization is the objective (cases W ) than in case the firms

maximize profits (cases S), since expected marginal welfare is always higher than expected

marginal profit.16 An immediate result is that a social planer would always like to increase

the investment of strategic firms above the chosen level (this is also shown formally in the

proof of theorem 3).

Whereas capacities in the scenarios we analyze can be ranked unambiguously, this is

not always true when it comes to social welfare. A welfare comparison is simple and

straightforward for cases SH, WH, and WL (where welfare is increasing in this order). In

case firms choose their capacities strategically it is not obvious, however, whether welfare

is higher in case of high (Cournot) or low (competitive) spot market prices (case SH or

SL). In scenario SH firms exercise market power at the spot market, whereas in case SL

spot prices are at the competitive level. Thus, in absence of capacity constraints welfare

would be higher in SL. However, at the investment stage strategic firms choose lower

capacities in case SL such that prices are higher in case SL than in SH whenever firms are

capacity constrained in both cases. Consequently, a welfare comparison of the two cases

is not straightforward and necessarily depends on details of the model’s specification. A

simplified model with linear demand demonstrates that both, an increase and a decrease

in welfare is possible and suggests that competitive prices at spot markets are particularly

undesirable from a welfare point of view if the number of firms is low. Thus, in particular

if market power already is a serious problem (few firms, Cournot spot market outcome), a

more competitive spot market reduces welfare even more. In markets with a higher number

of firms, however, the scenario with low spot market prices (SL) yields slightly higher

15This is the case in all demand scenarios in [θ̃SL, θ̃SH ].
16Formally, at a fixed capacity level, the critical value θ̃ is the same in both cases, but the integrand is

pointwisely bigger in cases W than in cases S.
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welfare. We come back to this issue in section 4, where we fit our model to the data of the

German electricity market. We obtain the following general results on welfare:

Theorem 4 (Welfare Comparison) (i) If investment is chosen as to maximize wel-

fare, implementation of a competitive spot market is always desirable, i.e. WWL ≥
WWH .

(ii) If investment is chosen strategically, implementation of a competitive spot market is

not always desirable, i.e. it may obtain that W SL ≤ W SH .

(iii) If investment is chosen strategically, implementation of a competitive spot market

is always less beneficial than in the case of welfare maximizing investment, i.e.(
WWL −WWH

)
≥
(
W SL −W SH

)
.

Proof See appendix E �

Theorem 4 shows that accounting for the fact that firms invest strategically (as compared

to the consideration of unstrategic firms) may revert the predicted impact of spot market

design on investment incentives and welfare. It rather seems essential to have a closer

look at the particular market conditions in order to derive reliable welfare conclusions. As

an example we conduct such an analysis for the German electricity market in section 4.

There we illustrate how our model can be applied to get deeper insights on welfare and

investment effects of different degrees of spot market competition in a particular market.

Before we proceed to the empirical part, however, we address the issue of entry, which has

been ignored in out analysis up to now. As it turns out, all our results continue to hold in

a model with free entry at some given entry cost, which is stated in the following theorem.

Theorem 5 (Free Entry) Suppose strategic firms can enter the market at some fixed

cost F in a free entry equilibrium. If firms expect a competitive spot market outcome, then

(weakly) less firms will enter the market. The statements of theorems 3 and 4 remain valid

also for the case of free entry.

Proof See appendix F �

4 An Empirical Analysis of Capacity Choice in Elec-

tricity Markets — The Example of Germany

In this section we demonstrate how our theoretical insights can be used to assess (long

run) capacity and welfare effects of electricity market liberalization. We also quantify

the capacity and welfare effects of several recent policy proposals for different degrees of
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market concentration.17 The approach can be applied to any electricity market by fitting

the theoretical model to the corresponding data and comparing predicted strategic capacity

choices to the actually installed level.18 Here, for the reason of data availability, we use

data of the German electricity market.

Note that — although they are quite stylized — our scenarios capture nicely some recent

policy proposals. A competitive spot market as described in case SL is closely related to

the common proposal to monitor tightly the firms’ spot market behavior (in order to force

prices down to the competitive level).19 The difference of capacity levels in scenarios SH

and WH is a proxy for the desirability of capacity markets or other mechanisms that

increase investment incentives.20 Thus, our analysis yields insights to assess some policy

tools that have been at the focus of the current debate on the need of reorganization of

electricity markets. Apart from capacity choices, we also focus on the price distribution in

the different scenarios and on welfare implications of regulatory interventions.

Our aim is to fit the theoretical model as closely as possible to the data of the German

Electricity market for the year 2006 and to compute resulting investment in gas turbine

generation capacity for the scenarios SL, SH, WH, and WL. Note that this approach yields

total investment under the assumption that each firm’s marginal generating unit is always

a gas turbine. Since investment in the last unit of capacity (which, of course, determines

total capacity) is always a marginal decision, we do not need to specify the inframarginal

technology mix for the empirical analysis. Note however, that we need to assume that firms

are symmetric in size (but not necessarily with respect to their inframarginal technology

mix). Since mark-ups in the Cournot model generally increase if firms become asymmetric,

our results yield a lower bound for the extent of market power for a given number of firms.

In order to use our theoretical model for the analysis we chose to make the following

specifications. We assume linear fluctuating demand P (Q) = θ − bQ and fluctuating but

constant marginal cost c(θ). Note that for linear demand our model can allow simultane-

ously for both, demand and cost fluctuations. If we sort all realizations of demand and

cost according to the differences θ − c(θ), the resulting framework satisfies assumptions 1

to 3. Furthermore, for the sake of our applied example, we interpret the distribution over

17All welfare effects we demonstrate can also be shown in a simplified model with linear demand and
uniform distribution of θ. In particular, in Grimm and Zoettl (2007) we show that the more concentrated
the market is, the less competitive the spot market outcome should be from a welfare point of view.

18We are not aware of any empirical studies of investment in electricity markets. The main reason
presumably is that the post liberalization period is not yet long enough to generate data on investment
cycles. This is also a strong argument for fitting a theoretical model to the primitives of a market to get
an impression of possible long run effects that cannot appear in the data yet.

19See, e.g. Monopolkommission (2007), p.4, paragraph 9.*. If the regulator has perfect information, the
result of such an intervention would be marginal cost pricing at the spot markets.

20Capacity markets have been proposed by Cramton and Stoft (2005), among others.
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the demand scenarios as relative frequencies which have been accurately predicted by all

firms.21

For a given demand and cost distribution and for given marginal investment cost, pre-

dicted capacities can be calculated by solving the corresponding first order conditions as

stated in theorems 1 and 2. The resulting capacity choices allow us to derive the price

distribution for those hours where capacity is binding, and to compare it to the observed

price distribution. Moreover, we can capture the welfare effect of regulatory interventions

and we can quantify the errors that would result from the consideration of non-strategic

(instead of strategic) investment. To this aim we calculate the welfare difference to the case

of strategic firms anticipating high spot market prices (SH) for scenarios SL, WH, and

WL and add up welfare differences generated in each hour of the year.

In order to assess the robustness of our results we do not perform the analysis for single

parameter values, but rather for plausible ranges of parameter distributions. This concerns

the following parameters of the model: The demand elasticity (determined by the slope of

the demand function, b), marginal cost of production, c, and marginal investment cost, k.

From the possible ranges of those parameters, our algorithm selects one random combination

in each iteration. The resulting distributions of capacities and welfare differences give an

impression of the sensitivity of our results to changes in the parameters. In the following

we provide some details on the relevant ranges of our cost and demand parameters.

Market demand: To construct fluctuating market demand, we depart from hourly mar-

ket prices (from the European Energy Exchange (EEX)22) and hourly quantities consumed

(from the Union for the Co-ordination of Transmission of Electricity (UCTE)23) for the year

2006. We chose the value of b in line with other studies on energy markets. Most studies

that estimate demand for electricity24 find short run elasticities between 0.1 and 0.5 and

long run elasticities between 0.3 and 0.7.25 The relevant range of prices is around P = 100

€/MWh and corresponding consumption is approximately Q = 50 GW. In our simulations

we thus use a uniform distribution of b on the interval [0.004, 0.007], which corresponds to

elasticities between 0.5 and 0.29.

21That is, in our empirical analysis we have no uncertainty but just demand fluctuation over time.
In practice, there should be two competing effects if uncertainty would be added to the analysis. Since
investment in gas turbines is rather risky and firms are typically risk averse, the benchmark determined
should yield too much investment. On the other hand, however, our model implies that a risk neutral firm
should invest more if risk is increased.

22See www.EEX.com
23See www.UCTE.org
24See, for example, Lijsen (2006) for an overview of recent contributions on that issue.
25E.g. Beenstock et al. (1999), Bjorner and Jensen (2002), Filippini Pachuari (2002), Booinekamp (2007),

and many others.
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Production cost: The major components of variable production cost are gas prices26

and prices for CO2 emission allowances.27 The average TTF gas price in 2006 was 20

€/MWh and CO2 permissions traded on average for 9.30 €/MWh.28 The efficiency of gas

turbines currently ranges at around 37, 5%.29 The resulting daily production cost for the

year 2006 was on average 66.30 €/MWh. Daily values, as used in our empirical analysis,

are illustrated in figure 1. In our simulations we use the observed distribution but multiply

each realization by the factor f which is uniformly distributed in [0.9, 1.1].
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Figure 1: Production Cost in the Year 2006.

Investment Cost: Since we analyze investment incentives based solely on one year, we

break down investment cost to annuities.30 In order to take construction time of gas turbine

plants into account we consider investment cost on the basis of data from the year 2000.

We assume perfect foresight, i.e. all cost components have been predicted accurately by the

firms at the time of their investment decision. We base investment cost on the following

two studies: First, a study on the German energy market commissioned by the German

26Daily values from the Dutch Hub TTF, corrected for transportation cost.
27Daily data taken from the EEX. The emission-coefficient for natural gas is set by the German ministry

of environment at 56t CO2/TJ which corresponds to 0.2016t CO2/MWh. Compare Umweltbundesamt
(2004).

28Recall that we do not use the averages but the daily values in our simulation.
29See 2006 GTW Handbook or EWI and Prognos (2005).
30The results will thus only yield a benchmark for current profitability of investment. Provided, however,

that yearly demand is increasing over time (and that strategic timing of investment is not an issue) our
procedure should yield accurate predictions, even though once installed capacities cannot be removed the
subsequent year.
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Parliament (2002), with scenarios for investment decisions summarized in Weber and Swider

(2004) [in the following GP/WS]. Second, Energiereport III, a study conducted by the

Institute of Energy Economics (EWI) in Cologne and Prognos (2000) for the the German

Ministry of Economics [in the following EWI/P].

The relevant annuity is determined as follows: Total investment cost ranges between

279 €/KW (GP/WS) and 300 €/KW (EWI/P). Annual fixed cost of running a gas turbine

is already included in GP/WS, and is given by 8 €/KWa in EWI/P. This value is corrected

by the average availability of gas turbines, which, in Germany, is given by 94%.31 Based

on a financial horizon of 20 years and an interest rate of 10 % this yields annuities of

34863 €/MWa (GP/WS) and 45998 €/MWa (EWI/P). Finally, the free allotment of CO2

allowances granted to new power plants results in a de facto reduction of the annuity by the

net value of the allocated allowances. Calculating their value on the basis of the average

market price in 2006 yields 6305.3 €/MWa. The range of relevant annuities which we use

in our simulation is consequently given by [28558, 39692] €/MWa.
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Figure 2: Investment Levels in all Four Cases.

31Compare VGB Powertech (2006).
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Figure 2 shows — for different numbers of firms — total investment in all four scenar-

ios we discuss. In the figure, the big symbols represent the average value while the two

smaller symbols of the same type determine the 90 % confidence interval of our simulation.

Obviously, predicted capacities are not very sensitive to changes in the parameters. The

first best investment does not change in the number of firms since we assume that each

firm’s marginal generating unit is a gas turbine, independently of the number of firms and

the level of demand. Strategic capacity choice prior to Cournot spot markets (scenario

SH) is at only 50 % of the optimal level for the monopoly case, while it is at 80 % of

the optimal level for four firms. The graph illustrates that the presence of market power

not only affects spot prices, but also has a strong effect on capacity choices. Total capacity

installed in Germany in 2006 was approximately 68 GW in a market with four large firms.32

The relatively high level of actual capacity as compared to our results reflects the fact in

the pre-liberalization period (i.e. before 1998) generators where subject to a rate of return

regulation that imposed excessive investment incentives.
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Figure 3: Price Distribution in the Hours where Capacity is Binding, Cases SH, SL, WH,

WL, and Observed Prices.

From the predicted capacity levels we now compute the price distribution for those

hours where capacity is predicted to be binding in the Cournot game. Since we want to

compare predicted prices to the observed price distribution, we choose (in accordance with

the German market structure) a scenario of four firms. We, moreover, choose the mean

32The German market consists essentially of four large players. Two of them (RWE and E.on) have a
market share of 26 % each, while the two smaller ones (ENBW and Vattenfall) together cover 30 % of the
market each. Compare, e.g., Monopolkommission (2007).
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values of the parameter intervals which we used in our simulations, i.e. b = 0.0055, and k =

35430/MWa.33 For our data set strategic firms are capacity constrained in approximately

1107 hours (12.6 % of the year).34 Figure 3 provides the observed price distribution (grey

line), as well as the predicted price distributions during the hours with a binding capacity

constraint, separately for scenarios WL, WH, SH, and SL (black lines). In order to make the

differences more visible, in the figure we focus on prices in the interval [0, 500] and provide

information on the highest price realizations in the legend. Obviously, for the parameter

configuration we chose, observed prices are above predicted prices in the first best scenario

but well below predicted prices in the Cournot market game. All depicted prices reflect the

willingness to pay for an additional unit of capacity that cannot be produced in the short

run. Notice that the relatively low level of observed prices (as compared to the Cournot

scenario) may well be due to the fact that currently firms have more capacity installed than

they would have chosen in a liberalized regime.35 Strategic investment would strongly affect

the price distribution, as comparison of the curves for the cases WL and SH illustrates.

Obviously, there is a strong potential for market power not only in the short run, but also

at the investment stage.
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Figure 4: Welfare Differences relative to Case SH for Cases SL, WH, and WL.

33We could also determine the price distribution for ranges of parameters. Since capacities have turned
out not to be very sensitive to changes in the parameters, however, we chose to use mean values to make
our illustration more readable.

34Our predicted values match the empirical observations. Due to Umweltbundesamt (2004), gas turbines
run approximately 10 % of the time.

35In the pre-liberalization period, generators where subject to a rate of return regulation that imposed
excessive investment incentives.
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Finally, figure 4 illustrates the welfare effect that results from more competitive spot

market behavior (e. g. enforced by the regulatory authorities). All welfare differences are

calculated in relation to the strategic investment game with high spot market prices. Again,

we ran simulations using the relevant parameter ranges. Big symbols represent average

welfare differences while small symbols are the 90 % confidence intervals. As we have

already seen from the theoretical analysis and from figure 2, imposing marginal cost prices

at the spot market considerably decreases equilibrium investment. The figure shows that

if the number of firms in the market is low, competitive spot market behavior significantly

decreases total welfare (as compared to Cournot spot markets). Only if the number of

firms is four or higher, total welfare is increasing. Thus, our analysis demonstrates that

regulatory intervention only at the spot market does not necessarily have the desired effect

if firms choose their capacities strategically.

The figure moreover illustrates the welfare effect of intervention only at the investment

stage (scenario WH) and of implementation of the welfare optimum. As it becomes clear

from the graph, performance of the Cournot market game is getting very close to the welfare

optimum as the number of competitors becomes large. We also observe that, while the effect

of increasing capacities given that firms have market power at the spot market is moderate

for all market structures, intervention at the spot market may have relatively large negative

effects on welfare if the number of firms is low.

5 Conclusion

In this paper we have provided a model of strategic investment prior to a series of spot

markets with fluctuating and potentially uncertain demand. Explicit modeling of demand

fluctuations is central when the good under consideration is not storable. In this case,

when making their investment decisions, firms have to take into account that capacity will

remain unused in low demand scenarios while they will produce at the capacity bound in

high demand scenarios. The main focus of our paper was (i) to analyze the impact of

spot market design on investment incentives of strategic firms and (ii) to study how the

consideration of strategic firms affects conclusions on the desirability of alternative spot

market rules (as compared to the traditional peak–load pricing approach, where welfare is

maximized).

The main motivation for our paper was to model investment in electricity markets.

We thus built on earlier research on electricity spot market competition and extended the

analysis by an investment stage. One of the most common approaches to model electricity

spot markets is the concept of supply function competition by Klemperer and Meyer (1989)

which has been applied to the case of electricity markets by Green and Newbery (1992).
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The supply function game typically has multiple equilibria which range from the competi-

tive market outcome (lower bound) to the Cournot solution (upper bound).36 Which of the

equilibria is being played in a particular market likely depends on specific market rules and

institutions. In a dynamic investment game a continuum of equilibria at the production

stage implies very imprecise overall equilibrium predictions ranging up to the collusive out-

come (folk theorems). In order to obtain meaingful solutions for the strategic investment

game we thus limited our analysis to the two extreme cases, the Cournot and the compet-

itive solution. This allowed us to pin down the effect of expected spot market prices on

investment incentives of strategic firms. Alternatively, one could use a specification of the

supply function model that yields a unique equilibrium prediction, as for example provided

by Holmberg (2008).

Let us briefly summarize our main results. We have shown that if firms invest strate-

gically the common intuition that spot markets should be more competitive is misleading.

The reason is that more competitive spot markets imply lower investment incentives, which

leads to higher scarcity prices, possibly also implies higher average prices and a welfare

reduction. Our results also hold under free entry of firms. Those findings are in contrast

to a well known result of the peak–load–pricing literature. This literature, which has an-

alyzed optimal investment in a similar environment, comes to the conclusion that optimal

investment (of non-strategic firms) is the higher, the more competitive the spot market

is. Our findings demonstrate that it is not possible to ”approximate” strategic investment

behavior by just using the results from the peak load pricing literature, which is often done

in applied electricity market research.37 We thus show that investment incentives and spot

design cannot be considered as two separate problems but are closely interconnected. In

order to properly assess the quality of spot market design it is indispensable to account for

the interaction of investment incentives and spot market behavior — and to model strategic

players explicitly.

In order to quantify the effects we identified in the theoretical part of the paper we

fitted our model to data of the German electricity market. We derived predicted invest-

ment levels for various degrees of market concentration, and illustrated welfare effects of

changing from a Cournot spot market to a competitive spot market outcome. In a market

of four firms (which corresponds to the current situation in Germany) predicted strate-

gic capacity choices are at 80 % of the capacity unstrategic firms would choose prior to a

competitive spot market38, while installed capacity is even at approximately 96 % of this

”competitive benchmark”. This is presumably due to high investment incentives in the

36Especially when uncertainty regarding demand at each single spot market is small, the Cournot and
the competitive solution are indeed the lowest and the highest equilibrium.

37See, for example, Boccard (2009), Bushnell (2005), Cramton and Stoft (2005), or Joskow (2007).
38This solution is also welfare maximizing.

21



pre–liberalization period. In accordance with the relatively high current capacity level, the

observed distribution of prices in 2006 is close to the predicted ”competitive benchmark”

price distribution for those scenarios where our model predicts that capacity is binding.

Moreover, for a market structure of four firms we find a slightly positive welfare effect

of changing from a Cournot spot market to competitive spot market prices. For highly

concentrated markets (i.e. monopoly or duopoly), strategic capacity choices are far below

the level that unstrategic firms would choose. We thus find that in concentrated markets,

changing from Cournot–prices to competitive prices at the spot market would decrease the

investment incentives drastically and would therefore have a large and negative welfare

effect.
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EWI and Prognos (2005), Energy Report IV, Study commissioned by the German

Ministry of Economics and Technology, Oldenbourg Industrieverlag.

Fabra, N., N.-H. von der Fehr and M. de Frutos (2008). Investment Incentives and

Market Design. CEPR Discussion Paper no. 6626

Fabra, N., and M. de Frutos (2007). Endogenous Capacities and Price Competition:

the Role of Demand Uncertainty. CEPR Discussion Paper no. 6096

Federal Environment Agency of Germany/Umweltbundesamt (2004). Guidelines for

the Allocation of CO2 Allowances 2005–2007.

von der Fehr, N.-H. and D. Harbord (1993). Spot Market Cnompetition in the UK

Electricity Industry, Economic Journal 103 (418), 531 – 46.

Gabszewicz, J. and S. Poddar (1997). Demand Fluctuations and Capacity Utilization

under Duopoly, Economic Theory 10, 131 - 146.

23



Gas Turbine World Handbook (2006). Vol. 25, Pequot Publishing, Inc.

German Parliament (2002), Enquete Commission on Sustainable Energy Supply

Against the Background of Globalisation and Liberalisation, Document 14/9400.

Green, R.J. and D. Newbery (1992). Competition in the British Electricity Spot

Market, Journal of Political Economy 100 (5), 929 – 53.

Grenadier, S. (2002). Option Exercise Games: An Application to the Equilibrium

Investment Strategies of Firms, The Review of Financial Studies 15 (3), 691 – 721.

Grimm, V. and G. Zoettl (2007). Capacity Choice under Uncertainty: The Impact

on Market Structure. Working paper.

Holmberg, P. (2007). Unique Supply Function Equilibrium with Capacity Con-

straints, Energy Economics 30, 148–172.

Joskow, P. (2007). Competitive Electricity Markets and Investment in New Gener-

ating Capacity, in: Helm, D. (ed.), The New Energy Paradigm, Oxford University

Press.

Joskow, P. (2008). Capacity Payments in Imperfect Electricity Markets: Need and

Design, Utilities Policy 16, 159 – 170.

Joskow, P., and J. Tirole (2007). Reliability and Competitive Electricity Markets,

Rand Journal of Economics 38, 60 – 84.

Kreps, D. and J. Scheinkman (1983). Quantity Precommitment and Bertrand Com-

petition yields Cnournot Outcomes, Bell Journal of Economics 14, 326 – 337.

Lijsen, M. (2006), The Real-Time Price Elasticity of Electricity, Energy Economics,

29, 249 – 258.

Monopoly Commission of Germany (2007), Special Report on Electricity and Gas

2007: Lack of Competition and Hesitant Regulation.

Murphy, F. and Y. Smeers (2005). Generation Capacity Expansion in Imperfectly

Competitive Restructured Electricity Markets, Operations Research, 53, 646 – 661.

Reynolds, S. and B. Wilson (2000). Bertrand–Edgeworth Competition, Demand Un-

certainty, and Asymmetric Outcomes, Journal of Economic Theory 92, 122 – 141.

Steiner, P. (1957). Peak Loads and Efficiency Pricing. Quarterly Journal of Eco-

nomics, 71, 585–610.

24



Stoft, Steven (2002). ”Power System Economics.” IEEE Press.

VGB Powertech (2006). Analysis of Non-Availabilities of Power Plants 1996–2005
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A Analysis of the Production Stage

The appendix contains all proofs of the paper. In the first part (appendices A.1 and A.2),

we analyze spot market behavior, which we need in order to prove theorems 1 (appendix

B) and 2 (appendix C).

In the first step we characterize capacity constrained production choices at the spot

market for each θ given investment choices x. Note that we have to consider also asymmetric

investment scenarios. In order to simplify the exposition we will order the firms according

to their investment levels, i. e. x1 ≤ x2 ≤ · · · ≤ xn, throughout the paper. At the spot

market either firms engage in Cournot competition or the behave competitively (i. e. because

a social planer implements the optimal production schedule given investment choices or

because firms choose a low supply function equilibrium). In the following two subsections

we analyze both scenarios.

A.1 Properties of the Highest Spot Market Outcome (Capacity

Constrained Cournot Game)

An equilibrium of the capacity constrained Cournot game at the spot market in scenario θ

given x, qH(x, θ), satisfies simultaneously for all firms

qHi (x, θ) ∈ arg max
q

{
P (q + qH−i, θ))q− C(q, θ)

}
s.t. 0 ≤ q ≤ xi. (3)

Note that at very low values of θ all firms are necessarily unconstrained. By assumption 1

the unconstrained Cournot equilibrium [which we denote by q̃H0(θ)] is unique and symmetric

for each θ ∈ [−∞,∞].39 From (3) it follows that q̃H0
i (θ) is implicitly determined by the

first order condition

P (nq̃H0
i , θ) + Pq(nq̃

H0
i , θ)q̃H0

i = Cq(q̃
H0
i , θ).

39See, for example Selten (1970), or Vives (2001), pp. 97/98.
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Now as θ increases, at some critical value that we denote by θH1(x), firm 1 (the one

with the lowest capacity) becomes constrained. The critical demand scenario is implicitly

determined by x1 = qH0
1 (θH1). If it holds that x1 < x2, then at θH1(x) only firm one

becomes constrained. Then, in equilibrium, firm 1 produces at its capacity bound whereas

the remaining firms produce their equilibrium output of the Cournot game among n − 1

firms given the residual demand P (Q− x1, θ) [denoted by q̃H1
i (x, θ)], which solves the first

order condition

P (x1 + (n− 1)q̃H1
i , θ) + Pq(x1 + (n− 1)q̃H1

i , θ)q̃H1
i = Cq(q̃

H1
i , θ).

The capacity constrained Cournot equilibrium in the case where one firm is constrained is

a vector qH1(x, θ), where qH1
i (x, θ) = min{xi, q̃H1(x, θ)}.

As θ increases further, we pass through n+1 cases, from case H0 (no firm is constrained)

to case Hn (all n firms are constrained). Note that two critical values θHm(x) and θHm+1(x)

coincide whenever xm = xm+1, and that it holds that θHm(x) < θHm+1(x) (by assumption

2) whenever xm < xm+1.

Now we are prepared to characterize the capacity constrained Cournot equilibrium in

case Hm where m firms are constrained. In this case, the m firms with the lowest capacities

produce at their capacity bound, whereas the n−m unconstrained firms produce

q̃Hmi (x, θ) =

{
qi ∈ R : P

(
m∑
i=1

xi + (n−m) q̃Hmi , θ

)
(4)

+Pq

(
m∑
i=1

xi + (n−m) q̃Hmi , θ

)
q̃Hmi = Cq

(
q̃Hmi , θ

)}
,

The equilibrium quantities of the capacity constrained Cournot game in case Hm are given

by

qHmi (x, θ) = min{xi, q̃Hmi (x, θ)}, (5)

and aggregate production in case Hm is

QHm(x, θ) =
n∑
i=1

qHmi (x, θ). (6)

This allows us finally to pin down the profit of firm i in scenario Hm,

πHmi (x, θ) =


P
(
QHm, θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QHm, θ

)
q̃Hmi (x, θ)− C

(
q̃Hmi (x, θ) , θ

)
if i > m.

(7)

Note that it holds that
dπHm

i

dxi
> 0 only if i ≤ m, and

dπHm
i

dxi
= 0 otherwise, since a firm’s capac-

ity expansion only affects production at the spot market in case the firm was constrained.

Obviously, in this case the derivative must be positive.

26



We can finally pin down maximal social welfare generated in demand scenario θ ∈
[θHm, θHm+1] (where, given x, the m lowest capacity firms are constrained) as

WHm (x, θ) =

∫ QHm(x,θ)

0

P (Q, θ) dQ−
n∑
i=1

C
(
qHmi (x, θ) , θ

)
. (8)

(we need this in order to prove Part (WH) of theorem 2). Note that WLm only depends on

xi if firm i is constrained in scenario m, that is if i ≤ m.

Lemma 1 (Monotonicity of θHm) dθHm(x)
dxi

is strictly positive if i ≤ m (i.e. if firm i

produces at its capacity bound), and zero otherwise.

Proof θHm(x) is the demand realization from which on firm m cannot play its uncon-
strained output any more. At θHm(x) it holds that qHi (θHm(x)) = q̃Hmi (θHm(x)) = xm for
all i ≥ m and qHi (θHm(x)) = xi < xm for all i < m. Thus, θHm(x) is implicitly defined by
the conditions

P

(
m∑
i=1

xi + (n−m)xm, θHm(x)

)

+Pq

(
m∑
i=1

xi + (n−m)xm, θHm(x)

)
xm − Cq

(
xm, θ

Hm(x)
)

= 0.

Differentiation with respect to xi, i < m, yields

Pq (·) + Pθ (·) dθ
Hm (x)
dxi

+ Pqq (·)xm + Pqθ (·)xm
dθHm (x)
dxi

− Cqθ (·) dθ
Hm (x)
dxi

= 0,

and solving for dθHm(x)
dxi

we obtain

dθHm (x)
dxi

= − Pq (·) + Pqq (·)xm
Pθ (·) + Pqθ (·)xm − Cqθ (·)

> 0

due to assumption 1, part (i) and assumption 2, part (ii) [note that the expression in

the denominator is the cross derivative which was assumed to be positive in part (ii) of

assumption 2].
Differentiation with respect to xi, i = m, yields

(n−m+ 2)Pq (·) + Pθ (·) dθ
Hm (x)
dxi

+(n−m+ 1)Pqq (·)xm + Pxθ (·)xm
dθHm (x)
dxi

− Cxx (·)− Cqθ (·) dθ
Hm (x)
dxi

= 0,

and solving for dθHm(x)
dxi

we obtain

dθHm (x)
dxi

= − (n−m+ 2)Pq (·) + (n−m+ 1)Pqq (·)xm − Cxx (·)
Pθ (·) + Pqθ (·)xm − Cqθ (·)

> 0,
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also due to assumption 1, parts (i) and assumption 2, part (ii). Finally, differentiation
with respect to xi, i > m, yields

Pθ (·) dθ
Hm (x)
dxi

+ Pxθ (·)xm
dθHm (x)
dxi

− Cqθ (·) dθ
Hm (x)
dxi

= 0,

which implies that dθHm(x)
dxi

= 0 for i > m. �

A.2 Properties of the Lowest Spot Market Outcome (Competi-

tive Behavior)

In the following we specify, for a given vector of capacities x, the competitive (welfare

optimal) production schedule for any possible demand scenario (that is, for any possible

value of θ).

Note that necessarily all firms are unconstrained for very low values of θ. It is straight-

forward to show that in the welfare optimum, all unconstrained firms produce the same

(due to convex cost). Thus, the socially optimal total quantity of each firm if all firms are

unconstrained is given by qL0
i (θ) = {qi ∈ R : P (nqi, θ) = Cq (qi, θ)}.

Now, as θ increases, at some critical value, that we denote by θL1(x), firm 1 (the

lowest capacity firm) becomes constrained. The critical demand scenario θL1(x) is im-

plicitly defined by x1 = qL0
1 (θL1). If it holds that x1 < x2, then at θL1(x) only firm

1 becomes constrained and the socially optimal (competitive) production plan implies

that firm 1 produces at its capacity bound whereas the remaining firms produce the un-

constrained optimal quantity given the residual demand P (Q − x1, θ), i. e. q̃L1
i (x, θ) =

{qi ∈ R : P ((n− 1)qi + x1, θ) = Cq (qi, θ)}. The optimal production plan in scenario L1 is

a vector qL1(x, θ), where each element is given by qL1
i (x, θ) = min{xi, q̃L1

i (x, θ)}.
As θ increases further and more firms become constrained, we pass through n+ 1 cases,

from case L0 (no firm is constrained) to case Ln (all n firms are constrained). Note that

two critical values θLm(x) and θLm+1(x) coincide whenever xm = xm+1, and that it holds

that θLm(x) < θLm+1(x) (by assumption 2) whenever xm < xm+1.

Now we are prepared to characterize the socially optimal production plan and social

welfare generated in case Lm, where m firms are constrained. In this case, the m firms with

the lowest capacities produce at their capacity bound, whereas the n−m unconstrained firms

produce the unconstrained optimal quantity given the residual demand P (Q−
∑m

i=1 xi, θ),

i. e.

q̃Lmi (x, θ) =

{
qi ∈ R : P

(
m∑
j=1

xj + (n−m)qi, θ

)
= Cq(qi, θ)

}
. (9)

We denote the optimal production plan in case Lm by qLm(x, θ) where each element is
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given by

qLmi (x, θ) = min{xi, q̃Lmi (x, θ)} i = 1, . . . , n. (10)

Consequently, the optimal total quantity produced in case Lm is

QLm(x, θ) =
n∑
i=1

qLmi (x, θ). (11)

This allows to pin down firm i’s profit in scenario Lm,

πLmi (x, θ) =


P
(
QLm(x, θ), θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QLm(x, θ), θ

)
q̃Lmi (x, θ)− C

(
q̃Lmi (·) , θ

)
if i > m.

(12)

We can finally pin down maximal social welfare generated in demand scenario θ ∈
[θLm, θLm+1] (where, given x, the m lowest capacity firms are constrained) as

WLm (x, θ) =

∫ QLm(x,θ)

0

P (Q, θ) dQ−
n∑
i=1

C
(
qLmi (x, θ) , θ

)
. (13)

(we need this in the proof of theorem 2). Note that WLm only depends on xi if firm i is

constrained in scenario m, that is if i ≤ m.

B Proof of Theorem 1

B.1 Proof of Theorem 1, Case (SH, Strategic Firms — High Spot

Market Prices)

Now we are prepared to analyze capacity choices at the investment stage. The results

obtained for spot market behavior enable us to derive a firm i’s profit from investing xi,

given that the other firms invest x−i and quantity choices at the spot markets are given

by qHm(x, θ) for θ ∈ [θHm(x), θHm+1(x)]. Recall that when choosing capacities the firms

anticipate demand fluctuations. Thus, a firm’s profit from given levels of investments, x, is

the integral over equilibrium profits at each θ given x on the domain [−∞,∞], taking into

account the distribution over the demand scenarios. For each θ, firms anticipate equilibrium

play at the spot markets, which gives rise to one of the n+1 types of equilibria, EQH0, . . . ,

EQHm, . . . , EQHn. Note that any x > 0 gives rise to the unconstrained equilibrium if θ is

sufficiently low. As θ increases, more and more firms become constrained. Thus, a tuple of

investment levels that initially gave rise to an EQH0, then leads to an equilibrium where
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first one (then two, three, . . . , and finally n) firms are constrained. In order to simplify the

exposition we define θH0 ≡ −∞ and θHn+1 ≡ ∞. Then, the profit of firm i is given by40

πi(x, q
H) =

m=n∑
m=0

∫ θHm+1

θHm

πHmi (x, θ)dF (θ)−K(xi). (14)

Note that at each critical value θHm, m = 1, . . . , n it holds that πHm−1(x, θHm) =

πHm(x, θHm). Thus, πi(x, q
H) is continuous. Differentiating πi(x, q

H) yields41

dπi
(
x, qH

)
dxi

=
n∑

m=i

∫ θHm+1(x)

θHm(x)

dπHmi (x, θ)

dxi
dF (θ)−Kx (xi) (15)

We prove part (i) of the lemma in two steps. In part I we show existence and in part II

uniqueness of the equilibrium.

Part I: Existence of Equilibrium In the following we show that a symmetric equilib-

rium of the investment game exists if firms invest strategically and expect high spot market

prices (case SH), and that equilibrium choices xSHi = 1
n
XSH , i = 1, . . . , n, are implicitly

defined by equation (2). For this purpose it is sufficient to show quasiconcavity of firm i’s

profit given the other firms invest xSH−i , πi(xi, x
SH
−i ), which we do in the following.

Note that πi(xi, x
SH
−i ) is defined piecewisely. For xi < xSHi , we have to examine the

profit of firm 1 (by convention the lowest capacity firm) given that x2 = x3 = · · · = xn.
Since this implies that θH2 = · · · = θHn and thus it follows from (14) that

π1(x1, x
SH
−1 ) =

∫ θH1(x)

−∞
πH0

1 (x, θ)dF (θ) +
∫ θHn(x)

θH1(x)

πH1
1 (x, θ)dF (θ) (16)

+
∫ ∞
θHn(x)

πHni (x, θ)dF (θ)−K(x1)

For xi > xSHi , the profit of firm i is the profit of the highest capacity firm (firm n according
to our convention), given all other firm have invested the same, i. e. x1 = · · · = xn−1. We
get

πn(xn, xSH−n ) =
∫ θHn−1(x)

−∞
πH0
n (x, θ)dF (θ) +

∫ θHn(x)

θHn−1(x)

πHn−1
n (x, θ)dF (θ) (17)

+
∫ ∞
θHn(x)

πHnn (x, θ)dF (θ)−K(x1)

40Note that it is never optimal for a firm to be unconstrained at∞ and thus, we always obtain θHn ≤ ∞.
41Note that continuity of πi implies that due to Leibnitz’ rule the derivatives of the integration limits

cancel out. Moreover, πHmi only changes in xi if firm i is constrained in scenario Lm, i. e. i ≤ m. Thus,
the sum does not include the cases where firm i is unconstrained, i. e. m < i.
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(i) The shape of πi(xi, x
SH
−i ) for xi > xSHi : The second derivative of the profit function

πn is given by42

d2πn
(dxn)2

= −dθ
Hn(x)
dxn

[
dπHnn (x, θHn)

dxn

]
︸ ︷︷ ︸

=0 (xn is opt. atθHn)

f(θHn) +
∫ ∞
θHn(x)

d2πHnn (x, θ)
(dxn)2︸ ︷︷ ︸

<0 by A1 part (iv)

f(θ)dθ < 0. (18)

Note that the first term cancels out and the second term is negative by concavity of the spot

market profit function (implied by assumption 1). We find that for xi ≥ xSHi , πi(xi, x
SH
−i )

is concave, which implies that upwards deviations are not profitable.

(ii) The shape of πi(xi, x
SH
−i ) for xi < xSHi : This region is more difficult to analyze since

the profit function π1(x1, x
SH
−1 ) is not concave. We can, however, show quasiconcavity of

π1(x1, x
SH
−1 ). For this purpose we need lemma 2 (below) in order to complete the proof of

existence (part I). We can show quasiconcavity of π1(x1, x
SH
−1 ) by showing that

dπ1(x
0
1, x

SH
−1 )

dx1

>
dπ1(x

SH
1 , xSH−1 )

dx1

= 0 for all x0
1 < xSH1 .

This holds true, since [compare also equation (15)]

dπ1(x0
1, x

SH
−1 )

dx1
=

∫ θHn(x0
1,x

SH
−1 )

θH1(x0
1,x

SH
−1 )

dπH1
1 (x0

1, x
SH
−1 , θ)

dx1
dF (θ)︸ ︷︷ ︸

≥0 by lemma 2, part (i)

+
∫ ∞
θHn(x0

1,x
SH
−1 )

dπHn1 (x0
1, x

SH
−1 , θ)

dx1
dF (θ)

≥
∫ ∞
θHn(x0

1,x
SH
−1 )

dπHn1 (x0
1, x

SH
−1 , θ)

dx1
dF (θ)

=
∫ θHn(xSH−1 ,x

SH
−1 )

θHn(x0
1,x

SH
−1 )

dπHn1 (x0
1, x

SH
−1 , θ)

dx1
dF (θ)︸ ︷︷ ︸

≥0 by properties 1 and 2, part (ii)

+
∫ ∞
θHn(xSH1 ,xSH−1 )

[
dπHn1 (x0

1, x
SH
−1 , θ)

dx1
−
dπHn1 (xSH1 , xSH−1 , θ)

dx1

]
dF (θ)︸ ︷︷ ︸

>0 by lemma 2, part (ii)

+
∫ ∞
θHn(xSH1 ,xSH−1 )

dπHn1 (xSH1 , xSH−1 , θ)
dx1

dF (θ)︸ ︷︷ ︸
=
dπi(x

SH )
dxi

=0 [recall that θH1(xSH)=θHn(xSH)]

≥ 0.

To summarize, in part I (i) and (ii) we have shown that πi(xi, x
SH
i ) is quasiconcave. We

conclude that the first order condition given in theorem 1 indeed characterizes equilibrium

capacities in the investment game with Cournot–style spot market competition.

42It is obvious that there is no incentive for any firm to deviate such that it is unconstrained at∞. Thus,
we only consider the case that all firms are constrained at ∞.
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Lemma 2 [Properties of Marginal Profits at Stage Two] Suppose all firms but

firm 1 have invested symmetric capacities summarized in the vector x0
−1. Firm 1 has invested

x1, less than each of the other firms. We obtain:

(i)
dπH1

1 (x0
1,x

0
−1,θ)

dx1
≥ 0 for θH1 ≤ θ ≤ θHn.

(ii)
dπHn

1 (x′1,x
0
−1,θ)

dx1
≥ dπHn

1 (x′′1 ,x
0
−1,θ)

dx1
≥ 0 for x′1 < x′′1, θHn ≤ θ ≤ ∞.

Proof (i) The first part holds due to the fact in case firm 1 is constrained, i. e. (θ ≥ θH1),

firm 1 would like to produce more than x1 for all demand realizations θ ≥ θH1, which,

however, is not possible due to the capacity constraint.

(ii) The first inequality follows from concavity of the profit functions in the spot markets,

which is implied by assumption 1. Thus, the first order condition at each spot-market is

decreasing in x1 until q̃H0
i , which immediately yields the first inequality of part (ii). The

second inequality is due to the fact that in case all firms are constrained, i. e. (θ ∈ [θHn,∞]),

firm 1 would like to produce more for all demand realizations θ (which is not possible because

it is constrained). �

Part II: Uniqueness In this part we show that (i) xSH is the unique symmetric equilib-

rium and (ii) that there are no asymmetric equilibria.

(i) xSH is the unique symmetric equilibrium. If capacities are equal, i. e. x0
1 = x0

2 =
· · · = x0

n, we have

dπi(x0)
dxi

=
∫ ∞
θHn(x0)

[P (nx0
i , θ) + Pq(nx0

i , θ)x
0
i − Cq(x0

i , θ)]f(θ)dθ −Kx(x0
i ).

Differentiation yields43

d2πi(x0)
(dxi)2

=
∫ ∞
θHn(x0)

[
(n+ 1)Pq(nx0

i , θ) + nPqq(nx0
i , θ)x

0
i − Cqq(x0

i , θ)
]
dF (θ)−Kxx(x0

i ) < 0,

which is negative due to assumption 1. Thus, since dπi(x
SH)

dxi
= 0 and moreover πi(x) is

concave along the symmetry line, no other symmetric equilibrium can exist.

(ii) There cannot exist an asymmetric equilibrium. Any candidate for an asymmetric

equilibrium x̂ can be ordered such that x̂1 ≤ x̂2 ≤ · · · ≤ x̂n, where at least one inequality

has to hold strictly. This implies x̂1 < x̂n. The profit of firm n can be obtained by setting

i = n in equation (14), and the first derivative is given by

dπn
dxn

=

∫ ∞
θHn(x)

dπHnn (x, θ)

dxn
f(θ)dθ −Kx(xn).

43Differentiation works as in (18).
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It is easy to show that firm n’s profit function is concave by examination of the second

derivative [see equation (18)]. Thus, any asymmetric equilibrium x̂, if it exists, must satisfy
dπn(x̂)
dxn

= 0. We now show that whenever it holds that dπn(x̂)
dxn

= 0, firm 1’s profit is increasing

in x1 at x̂ (which implies that no asymmetric equilibria exist).

From equation (15) it follows that the first derivative of firm 1’s profit function is given

by

dπ1

dx1

=

∫ θH2(x)

θH1(x)

dπHn1 (x, θ)

dx1

f(θ)dθ + · · ·+
∫ ∞
θHn(x)

dπHn1 (x, θ)

dx1

f(θ)dθ −Kx(x1).

Note that all the integrals in dπ1

dx1
are positive since firm 1 is constrained at all demand

realizations and therefore would want to increase its production. Thus, we have

dπ1

dx1
>

∫ ∞
θHn(x)

dπHn1 (x, θ)
dx1

f(θ)dθ −Kx(x1),

where the RHS are simply the last two terms of dπ1

dx1
. Note furthermore that x̂1 < x̂n also

implies that Kx(x̂1) < Kx(x̂n) (due to assumption 3) and

dπ1(x̂)
dx1

= P (x̂, θ) + Pq(x̂, θ)x̂1 − Cq(x̂1, θ) < P (x̂, θ) + Pq(x̂, θ)x̂n − Cq(x̂n, θ) =
dπn(x̂)
dxn

(due to assumption 1). Now we can conclude that

dπ1

dx1
>

∫ ∞
θHn(x)

dπHn1 (x, θ)
dx1

f(θ)dθ −Kx(x1) >
∫ ∞
θHn(x)

dπHnn (x, θ)
dxn

f(θ)dθ −Kx(xn) = 0.

The last equality is due to the fact that this part is equivalent to the first order condition of

firm n, which is satisfied at x̂ by construction. To summarize, we have shown that dπ1

dx1
> 0,

which implies that there exist no asymmetric equilibria, since at any equilibrium candidate,

firm 1 has an incentive to increase its capacity.

B.2 Proof of Theorem 1, Case (SL, Strategic Firms — Low Spot

Market Prices)

If firms behave competitively at the spot markets, firm i’s spot market–profit in scenario θ

is given by (12). The investment stage expected profit of firm i is obtained by integrating

over all profits associated with each demand realization,44

πi(x, q
L) =

n∑
m=0

∫ θLm+1(x)

θLm(x)

πLmi (x, θ)dF (θ)−K (xi) . (19)

Thus, the first order condition is

dπi
(
x, qL

)
dxi

=
n∑

m=i

∫ θLm+1(x)

θLm(x)

dπLmi (x, θ)

dxi
dF (θ)−Kx (xi) . (20)

44We define θL0 = −∞ and θLn+1 =∞.
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Now note that dπi

dxi
> 0 at X = 0 (since investment is gainful), that dπi

dxi
< 0 for some finite

value of X, and that dπi

dxi
is continuous. Thus, a corner solution is not possible, and we

have at least one point where (2) is satisfied and dπi

dxi
is decreasing. Note, however, that

this does not assure existence. In fact, in the scenario considered here a firm’s investment

stage profit is not even quasiconcave, and it is not possible to reformulate the game as a

supermodular game.

Now assume constant marginal production cost. Note that in the case of constant

marginal production costs it is, independently of the capacity choices firms made at the

investment stage, always true that either all firms are constrained at p = Cq(·, θ), or none

of them. Thus, it holds that θL1(x) = · · · = θLn(x).

In order to prove part (SL) of theorem 1, we apply theorem 2.1 of Amir and Lamb-

son (2000), p. 239. They show that the standard Cournot oligopoly game has at least one

symmetric equilibrium and no asymmetric equilibria whenever demand P (·) is continuously

differentiable and decreasing, cost C(·) is twice continuously differentiable and nondecreas-

ing and, moreover, the cross partial derivative dπ(X,q)
dX−idX

> 0, where X denotes total capacity

and X−i capacity chosen by the firms other than i. In order to see that the results of Amir

and Lambson apply to our setup, note that our game is equivalent to a game where firms

choose output given the expected demand and cost function. Note that if the first best

outcome occurs whenever capacity is sufficient, it follows that expected inverse demand is

given by

EP (X) =

∫ θLn(x)

−∞
P
(
QL0 (θ) , θ

)
dF (θ) +

∫ ∞
θLn(x)

P (X, θ) dF (θ) , (21)

and expected cost is given by

EC(xi) =

∫ θLn(x)

−∞
C
(
qL0
i , θ

)
dF (θ) +

∫ ∞
θLn(x)

C (xi, θ) dF (θ) +K (xi) , (22)

Note that EP (X) is strictly decreasing in X and EC(xi) is strictly increasing in xi, but
they do not satisfy assumption 1, part (i), which is why existence and uniqueness are not
implied by standard (textbook) analysis.45 However, Amir and Lambson’s assumptions46

are satisfied, since the cross partial derivative

dπ2(X, qH)
dX−idX

= −dθ
Ln(x)
dX

[
−P (X, θLn(x)) + Cq(X −X−i, θLn(x))

]︸ ︷︷ ︸
=0 at θLn(x)

f(θLn(x))

+
∫ ∞
θLn(X)

[−Pq(X, θ) + Cqq(X −X−i, θ)]︸ ︷︷ ︸
>0

f(θ)dθ

45In fact, the expected profit function is not even quasiconcave, as it is easily seen by inspecting its
second derivative.

46The assumptions are: P (·) is continuously differentiable with Pq(·) < 0, C(·) is twice continuously
differentiable and nondecreasing, and Pq(X)− Cqq(xi) < 0.
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is positive. This guarantees that we have at least one symmetric equilibrium and no

asymmetric equilibria in case of constant marginal cost.

C Proof of Theorem 2

The proof of theorem 2 (where welfare maximizing capacities are chosen) is quite similar to

the proof of theorem 1. We therefore give only a brief sketch, and refer to a working paper

version of the paper (Grimm and Zoettl (2007)) for an extensive version of the proof.

In order to prove part (WL), we consider for each realization of θ the welfare maximum

at the spot market for fixed capacity choices. Integration over all realizations of spot market

demand then yields expected welfare, which is given by the following expression:

W(x, qL) =
n∑

m=0

∫ θLm+1(x)

θLm(x)

WLm(x, θ)dF (θ)−
n∑
i=1

K (xi) . (23)

Note that at each critical value θLm, m = 1, . . . , n, it holds that WLm−1(x, θLm) =

WLm(x, θLm). Thus, W(x) is continuous. Differentiating W(x) yields the following first

order condition:

dW(x, qL)

dxi
=

n∑
m=i

∫ θLm+1(x)

θLm(x)

dWLm (x, θ)

dxi
dF (θ)−Kx (xi) = 0. (24)

After verification of the second order conditions we can conclude that the above first order

condition (24) yields a unique and symmetric first best solution as stated in theorem 2,

part (WL).

In order to proof part (WH), we need to determine welfare generated at the spot market

at each realization of θ for fixed capacity choices given Cournot competition. Expected

welfare is then again determined by integrating over all realizations of spot market demand

and evaluation of first and second order conditions yields a unique and symmetric solution

stated in the theorem.

D Proof of Theorem 3

In appendices B and C we have shown that all games analyzed throughout this article

have only symmetric equilibria. In the remaining three proofs we therefore simplify our

notation of the critical demand scenarios in case of high and low demand. In the following,

the critical demand realization θDj, where D = {L,H} and j = 0, . . . , n will be denoted

by θD (since in a symmetric solution all firms are constrained from the very same demand
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realization on) and unconstrained industry output QDj, where D = {L,H} and j = 0, . . . , n

can be denoted by QD for symmetric investment.
Now consider the first order conditions that implicitly define total capacities in the four

scenarios considered, as given in theorems 1 and 2. Recall that (i) Pq(X, θ) < 0, and note
that (ii) θH(x) > θL(x) for all x. Furthermore, (iii) at (below, above) the demand realization

θH(xSH) we have that Pq(X
SH , θ)X

SH

n
+ P (XSH , θ) − Cq( 1

n
XSH , θ) = 0 (< 0, > 0). Thus,

the lefthand–sides of the first order conditions can be ordered as follows:

WL :
∫ ∞
θL(x)

[
P (X, θ)− Cq

(
1
n
X, θ

)]
dF (θ) (25)

WH : ≥
∫ ∞
θH(x)

[
P (X, θ)− Cq

(
1
n
X, θ

)]
dF (θ)

SH : >

∫ ∞
θH(x)

[
Pq (X, θ)

1
n
X + P (X, θ)− Cq

(
1
n
X, θ

)]
dF (θ)

SL : ≥
∫ ∞
θL(x)

[
Pq (X, θ)

1
n
X + P (X, θ)− Cq

(
1
n
X, θ

)]
dF (θ)

Note that according to theorems 1 and 2, the total capacities are determined as the values

of X where the respective term equals Kx

(
1
n
XZ
)
, Z ∈ {WL, WH, SH, SL}. Recall that

in all cases we get interior solutions and note that the above terms (except for the one

that determines XSL) are decreasing in X, while Kx is increasing in X. This immediately

implies XWL ≥ XWH > XSH .

In order to see why the ranking stated in the theorem also holds for case SL, note that

the above term in scenario SH is strictly decreasing in X, whereas in scenario SL the left

hand side (LHS) of the first order condition satisfies LHS(0) > Kx(0) (since investment is

gainful) and LHS(X) < Kx(X) for X high enough. Since Kx(X) is increasing in X, this

immediately implies that for any equilibrium investment XSL it holds that XSH ≥ XSL.

E Proof Theorem 4

Part (i). We first determine welfare generated in case WL, where firms behave competi-

tively at the spot markets and investment choice XWL is made such as to maximize welfare.

At all spot markets θ < θL(XWL) firms produce unconstrained output at marginal cost,

generating welfare given by WL(θ). For all spot markets θ ≥ θL(XWL) firms produce at

their capacity bounds given by XWL, generating welfare W̃L(θ,X).

WL(θ) =
∫ QL(θ)

0

P (Y, θ)Y − nC(Y/n, θ)dY, and W̃L(θ,X) =
∫ X

0

P (Y, θ)Y − nC(Y/n, θ)dY

Total welfare WWL is thus given by:

WWL =
∫ θL(XWL)

−∞
WL(θ)dF (θ) +

∫ ∞
θL(XWL)

W̃L(θ,XWL)dF (θ)− nK(XWL/n)
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Notice that for given investment choice a perfectly competitive spot market yields the

welfare optimal spot market outcome. Since investment is chosen such as to maximize

welfare, this implies that case WL leads to the overall first best market outcome.

We now derive welfare generated in case WH. Firms choose spot market output QH(θ)

strategically. For θ < θL(XWH) capacity is not binding, we denote generated welfare at

those spot markets by WH(θ). For θ ≥ θL(XWH) firms produce at their capacity bounds,

we denote generated welfare by W̃H(θ,X).

WH(θ) =
∫ QH(θ)

0

P (Y, θ)Y − nC(Y/n, θ)dY, and W̃H(θ,X) =
∫ X

0

P (Y, θ)Y − nC(Y/n, θ)dY

Total welfare WWH is then given by:

WWH =
∫ θH(XWH)

−∞
WH(θ)dF (θ) +

∫ ∞
θH(XWH)

W̃H(θ,XWH)dF (θ)− nK(XWH/n)

Notice that in case WH, spot market output for given investment is not chosen such as

to maximize welfare, but as the equilibrium of strategically interacting firms. This directly

implies that welfare in case WH is strictly lower than in case WL.

Part (ii). We now compare welfare generated in the cases SL and SH. In case SL firms

at all spot markets θ < θL(XSL) produce unconstrained output at marginal cost, generating

welfare WL(θ). For all spot markets θ ≥ θL(XSL) firms produce at their capacity bounds,

generating welfare W̃L(θ,X). We obtain for total welfare in case SL

WSL =
∫ θL(XSL)

−∞
WL(θ)dF (θ) +

∫ ∞
θL(XSL)

W̃L(θ,XSL)dF (θ)− nK(XSL/n). (26)

In case SH, firms choose spot market output QH(θ) strategically. For θ < θL(XSH)

capacity is not binding and welfare WH(θ) is generated at each spot market. For θ ≥
θL(XSH) firms produce at their capacity bounds, generating welfare W̃H(θ,X). We obtain

for total welfare in case SH

WSH =
∫ θH(XSH)

−∞
WH(θ)dF (θ) +

∫ ∞
θH(XSH)

W̃H(θ,XSH)dF (θ)− nK(XSH/n). (27)

For low spot market realizations θ < θL(XSL) capacities are binding neither in case SH,

nor in case SL. For those low demand realizations welfare generated at more competitive

spot markets (i.e. case SL) is clearly higher than for strategic spot market outcomes (i.e.

case SH). For high spot market realizations θ ≥ θL(XSH), capacities are binding in both

cases SH and SL. Welfare generated in case SH is now strictly bigger, since investment

strictly exceeds investment of case SL (see theorem 3). Which of those two effect dominates,

depends on the precise structure of the market and the pattern of demand fluctuation. As

we find, especially when market concentration is high, however, the implementation of a
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competitive spot market leads to a reduction of overall welfare. Moreover, as illustrated in

figure 4, especially in highly strategic environments the impact of erroneous market design

is substantial, however.

Part (iii). For the case of strategic investment, desirability of the more competitive

spot market outcome depends on the precise parameters of the market game, as we have

established in part (ii) of the theorem. In part (iii) we now establish a weaker statement,

which is always true, however. As we find, a market designer will always overestimate the

beneficial impact of implementing the competitive spot market outcome if basing his anal-

ysis on a framework of optimal investment but not of investment in a market equilibrium.

In order to proof the theorem, we have to show
(
WWL +W SH

)
≥
(
WWH +W SL

)
. This

can be verified by point wise inspection for all spot market realizations θ.

For spot market θ < θH(XSH) firms can produce the unconstrained strategic spot

market output in the cases SH and WH. For case SH this is true by definition of θH(XSH)

and for case WH this is true since XSH ≤ XWH , as established in the proof of theorem

3. welfare generated in the cases SH and WH is thus identical for all those spot market

realizations. Likewise, since XWL > XSL, welfare generated in case WL weakly exceeds

welfare generated in case SL for those spot market realizations.

For θ ≥ θH(XSH) firms produce at the investment boundary for both cases SH and

SL. For case SH this is true by definition of θH(XSH) and for case SL this is true since

XSL ≤ XSH , as established in the proof of theorem 3. As already established in part (ii),

whenever firms are constrained at the spot market, welfare generated in case SH clearly

exceeds welfare generated in case SL. Moreover, case WL always outperforms case WH in

terms of welfare, no matter if capacities are binding or not (compare part (i)).

F Proof of Theorem 5

We now consider the case of a free entry equilibrium. Entry is costly and firms enter the

market as long as profits are non–negative. We first show that weakly less firms enter

the market in case SL as compared to case SH in a free entry equilibrium, i.e. nSL ≤
nSH . Remember in case SH, for θ < θH , firms produce in an unconstrained spot market

equilibrium, and are capacity constrained for all higher demand realizations47. In case SL

for θ < θL firms produce unconstrained spot market output at marginal cost and produce

47The free entry analysis obviously anticipates the symmetric equilibrium, established in theorem 1 as
the solution of the investment market game. In order to save on notation we omit equilibrium investment
XSH and XSL in the argument of the critical spot market realizations θH(XSH) and θL(XSL) respectively.
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at the capacity bound for all higher demand realizations. We derive firms’ profits for both

cases (SL and SH).

πSHi (n) =
∫ θH

−∞
πH0
i

(
QH , θ

)
dF (θ) +

∫ θL

θH
πHni

(
XSH , θ

)
dF (θ) +

∫ ∞
θL

πHni
(
XSH , θ

)
dF (θ)−K

(
XSH/n

)
(28)

πSLi (n) =
∫ θH

−∞
πL0
i

(
QL, θ

)
dF (θ) +

∫ θL

θH
πL0
i

(
QL, θ

)
dF (θ) +

∫ ∞
θL

πLni
(
XSL, θ

)
dF (θ)−K

(
XSL/n

)
(29)

Notice that the expressions for firms’ profits have been expanded, such as to contain both

critical demand realizations θH and θL. We now show that for any fixed number n of firms,

profits are lower in case SL than in case SH, i.e. πSHi (n) ≥ πSLi (n).

First observe that πH0
i

(
QH , θ

)
> πH0

i

(
QL, θ

)
for all θ < θH . This follows from the

observation that firms are unconstrained at those spot markets, and profits for strategic

spot market behavior are higher, than under perfect competition.

In order to compare the remaining terms of expressions (28) and (29), have to make use

of the equilibrium conditions derived in theorem 1.48 We obtain for the remaining three

terms of expression (28):∫ θL

θH
πHni

(
XSH , θ

)
dF (θ) +

∫ ∞
θL

πHni
(
XSH , θ

)
dF (θ)−K

(
XSH

n

)
= (30)∫ ∞

θH
−Pq(·)

(
XSH

n

)2

+
(
Cq (·) X

SH

n
− C

(
XSH

n
, θ

))
dF (θ)) +

(
Kx (·) X

SH

n
−K

(
XSH

n

))
Analogously we rewrite the last three terms of expression (29) and obtain:∫ θL

θH
πL0
i

(
QL, θ

)
dF (θ) +

∫ ∞
θL

πLni
(
XSL, θ

)
dF (θ)−K

(
XSL

n

)
= (31)∫ θL

θH
−Pq(·)

(
QL

n

)2

+
(
Cq (·) Q

L

n
− C

(
QL

n
, θ

))
dF (θ)) +∫ ∞

θL
−Pq(·)

(
XSL

n

)2

+
(
Cq (·) X

SL

n
− C

(
XSL

n
, θ

))
dF (θ)) +

(
Kx (·) X

SL

n
−K

(
XSL

n

))
Expressions (30) and (31) can now be compared point wisely for all θ > θH . Observe

that
(
−Pq(Y, θ)

(
Y
n

)2)
is strictly increasing in Y due to assumption 1 (i). Moreover

(Cq (y) y − C (y)) and (Kx (y) y −K (y)) are increasing in y due to concavity of production

and investment cost (assumptions 1 (ii) and 3). As established in theorem 3, XSL < XSH ,

furthermore, unconstrained production QL, by definition, is always below the capacity, i.e.

48We expand the equilibrium conditions
∫∞
θH
P + Pqxi − CqdF (θ) = Kx as follows:∫ ∞

θH
Pxi − C (xi) dF (θ)−K (xi) =

∫ ∞
θH

(−Pqxi + Cq)xi − C (xi) dF (θ) +Kxxi −K (xi) .
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QL ≤ XSL. This directly implies, however, that expression (30) is strictly bigger than

expression (31).

We thus established that for a fixed number of firms active on the market, profits of

firms are strictly lower in case SL than in case SH. That is, when investment is chosen

strategically by a fixed number of firms, overall profits are lower under competitive spot

markets than for strategic behavior at the spot markets. This implies, furthermore, that

in a free entry equilibrium weakly less firms will enter the market in case SL than in case

SH, i.e. nSL ≤ nSH .

We finally show that indeed the statements of theorems 3 and 4 are true also under

the hypothesis of free entry. From theorem 3 we obtain XSL
(
nSL
)
≤ XSH

(
nSL
)

for

some fixed number nSL of firms active in either case. Since under free entry nSL ≤ nSH

and since investment XSH is increasing in the number of firms active on the market we

can directly conclude that XSL
(
nSL
)
≤ XSH

(
nSH

)
. The same reasoning holds true for

the welfare analysis of theorem 4. We obtained W SL
(
nSL
)
≤ W SH

(
nSL
)

for a fixed

number of firms active on the market. Since under free entry nSL ≤ nSH and since welfare

W SH is increasing in the number of firms active on the market, we can conclude that

W SL
(
nSL
)
≤ W SH

(
nSH

)
.
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