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Abstract

We analyze why the number of firms in the dynamic random access semiconductor
industry follows an inverse U-shape throughout different product generations. A dynamic
oligopoly model with entry, exit, learning by doing and firm-specific productivity is esti-
mated using the two-step estimator developed by Bajari, Benkard and Levin (2007). The
estimator recovers investments into product specific innovation as a sunk cost derived from
firms’ equilibrium behavior. We find that the interdependence between product-specific
innovation and market demand explains the change in market structure. Our results also
confirm that a firm’s investment into improved process technologies is an important factor
that determines if firms are able to keep up with the competitive pressure in the market.
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1 Introduction

Seminal contributions highlight the interdependence between innovation, growth, entry and

exit and evaluate their impact on the competitiveness of markets.1 The purpose of this study

is to analyze the impact of innovation on entry and exit in the dynamic random access memory

(DRAM) industry.2 The industry is characterized by improved process technologies, which

became increasingly complex over time, as recently developed electronic products imposed

higher requirements for DRAM chips regarding the storage of information and the size of the

chips requiring higher R&D investments. Moreover, life cycles became shorter and imposed

higher pressure on firms to recoup R&D investments within a shorter time period. Firms may

not be able to keep up with the increasingly required investments into new technologies and

exit the market. Accounting for the fact that more innovative industries are characterized by

higher exit rates (Geroski, 1995), it is surprising, however, that the number of firms in the

DRAM industry did not decline over time, but rather followed an inverse U-shape throughout

different generations. More specifically, the number of active firms increased from 15 in the

4K DRAM generation in 1978 to 30 in the 4MB generation in the mid 1990’s, and declined

to 8 firms in the 1 GB generation in 2004. We are especially interested in explaining why the

number of firms in the DRAM industry follows an inverse U-shape.

One reason why the number of firms increased for early generations, might be given by

the fact that demand for DRAM chips steadily increased over time as an input for electronic

devices. Whereas the ongoing growth in demand for DRAM chips may explain the increase in

the number of firms for early generations, it still remains unanswered why the number of firms

declined for more recent generations.

Our study concentrates on evaluating the increase in development costs and market demand

on market structure, i.e. firms’ entry and exit. We are especially interested in estimating the

increasingly required R&D investments throughout different generations. A challenging task

is that we do not observe R&D investments into specific DRAM generations.3 To overcome

1See Acs and Audretsch (1988), Griliches and Klette (1997), Klepper (2002), Klepper and Graddy (1990),

Klepper and Simons (2000), Scherer (1998) and Sutton (2001) among many others for contributions in this

area. Klepper (1996) provides an excellent overview of how entry, exit, market structure and innovation vary

over the product life cycle.
2Dynamic random access memories are components within the family of semiconductors. They are designed

for storage and retrieval of information in binary form and are classified into ‘generations’ according to their

storage capacity. For more information on the industry, see Section 2.
3Potential proxies such as patents are available at the firm level and difficult to attribute to specific products

or DRAM generations.
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this missing data problem, we infer the product-specific investments as a sunk cost from firms’

equilibrium behavior in different DRAM generations. Therefore, we exploit the fact that firms

need to recoup their R&D investments into a new product generation in order to be able to

survive in the market.

We formulate a dynamic oligopoly model in the tradition of Ericson and Pakes (1995) in

which forward looking firms make entry, exit and production decisions. Firms account for

learning-by-doing effects and firm-specific productivities in order to maximize their expected

discounted sum of profits over the life cycle.

To obtain an estimate for generation-specific R&D investments, we apply the two stage

estimator by Bajari, Benkard and Levin (2007) which allows us to incorporate continuous

(production) as well as discrete choices (entry and exit) in dynamic games. Their estimator

builds on the idea by Hotz, Miller, Saunders, and Smith (1993) and uses forward simulations to

obtain the continuation values given optimal policies.4 There are other studies that estimate a

fully dynamic oligopoly model applying a two-step algorithm, see e.g. Beresteanu and Ellickson

(2006), Collard-Wexler (2005), Gowrisankaran, Lucarelli, Schmidt-Dengler, and Town (2008),

Hashmi and Van Biesebroeck (2008), Macieira (2006), Ryan (2006), and Sweeting (2006). One

common feature in those studies is that state variables are commonly observed by the players

and the econometrician. To date, few dynamic discrete choice models have been extended to

accomodate unobserved heterogeneity, see Hu and Shum (2008a and 2008b) and Kasahara and

Shimotsu (2008).5

A well known fact for the DRAM industry is that learning by doing is an important phe-

nomenon. Through repetitions and fine tuning of production processes, firms are able to lower

manufacturing costs.6 Firms experience lowers (future) costs and enters the model as an ob-

served state variable. Beyond industry-specific learning by doing effects which are usually

assumed to be common across firms, we also account for firm-specific productivity, as potential

4Recent studies focus on reducing the computational burden in dynamic games by estimating instead of

calculating the continuation values and apply two step algorithms, see Aguirregabiria and Mira (2007), Bajari,

Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-Dengler (2007). For

further discussion and an description of the different methods, see also Ackerberg, Benkard, Berry and Pakes

(2005).
5For more information about how to correct for serially correlated unobserved state variables, see also Bajari,

Benkard, and Levin (2007), Ackerberg, Benkard, Berry and Pakes (2006), Ackerberg, Caves and Frazer (2005),

Levinsohn and Petrin (2003), Olley and Pakes (1996) and Wooldridge (2005). For discussions on the problems

caused by unobserved correlated state variables in dynamic models, see also Heckman (1981) and Pakes (1994).
6Contributions in estimating learning effects for the semiconductor industry are Gruber (1996), Irwin and

Klenow (1994), Siebert (2007), and Zulehner (2003).
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deviations from the common industry learning curve. Firm-specific productivity is stemming

from the fact that firms invest differently into the development of new process technologies to

reduce costs.7 Firm-specific productivity may also last more than one period, as the develop-

ment of new process technologies has longlasting impact on firms’ profits. Therefore, we treat

the firm-specific productivity as a serially correlated unobserved state variable. We assume

that the firm-specific productivity enters the firms’ cost function and follows a first order au-

toregressive process, such that it depends on the last period’s productivity and an independent

private shock every period.

One problem with unobserved serially correlated state variables in dynamic models is the

fact that identification becomes a challenging task. In dynamic games and contrary to i.i.d.

shocks, we explicitly need to account for the fact that players and the econometrician need to

form beliefs over the distribution of their rivals’ unobserved state variables. When solving this

problem backwards, we get back to the initial condition problem. In our study, we can easily

overcome the initial condition problem since every single DRAMgeneration starts from the same

initial state, which is zero production. Another challenge is the fact that the unobserved serially

correlated state variable causes a contemporanous correlation between firm-level productivity

and learning by doing, leading to a potential simultaneity bias. Firms characterized by a higher

productivity will further increase output which will enter next period’s experience through

learning by doing and lower costs. Different alternatives have been suggested to account for

the simultaneity bias. Prominent studies in the production function literature apply a proxy

variable approach, see e.g. Olley and Pakes (1996). One difficulty in applying a proxy variable

approach is that the proxy variable needs to be monotonic in order to appropriately proxy for

the firm-specific productivity.

Applying an instrumental variable approach is another alternative, e.g. searching for in-

struments that are highly correlated with the endogenous regressor (learning by doing), but

not correlated with the productivity term.8 In finding an appropriate instrument for learning

by doing in a specific generation, we follow Thompson (2005). Using the fact that technologies

are generation-specific. Firms need to establish new plants equipped with different technologies

compared to those having been used in the previous generation. Given that firm-level produc-

7Other reason are differences in managerial abilities, technological (absorptive) capacities, organizational

structure, or strategic alliances. However, we primarily focus on the development of new process technologies.
8The decision whether to apply a proxy or an instrumental variable approach gets back to finding appropriate

proxies for the omitted variable (productivity) or finding appropriate instruments for the endogenous regressors,

respectively. Also, the fact that we have firm-level data over a sufficiently long time series reinforces the decision

to apply an instrumental variable approach.
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tivity is generation-specific, it is only correlated with learning in the current generation, but

not with learning in the previous generation. On the other hand, learning is a common phe-

nomenon across generations and therefore correlated across generations. This feature enables

us to use the production experience in the previous generation as an instrument for learning

by doing in the generation under consideration.

In the first step of our estimation algorithm, the policy functions (i.e. production, entry

and exit) are estimated. The policy functions describe what actions firms take at different

states. We assume that the policy functions are determined by costs that are characterized by

economies of scale, learning-by-doing, input prices and firm-specific productivity. The latter is

incorporated into the cost function using as a serially correlated unobserved state variable. In

our main specification, we directly control for the serially correlated unobserved productivity

by applying a lagged dependent variable model and use a fixed effects estimator. To account

for the dependence between the lagged and the current dependent variable and the unobserved

heterogeneity, we use instruments for the lagged dependent variable and learning by doing. We

also estimated two other instrumental variable models in order to check for robustness of our re-

sults. In the first alternative, we treat the unobserved productivity as an error term that follows

a first-order autoregressive process and apply a Generalized Least Squares estimator allowing

for fixed effects in order to control for unobserved heterogeneity.9 In the second alternative,

we use a first difference GMM estimator by Blundell and Bond (1998), which eliminates un-

observed firm-specific effects using first-differences and instruments for the differenced learning

variable.10

In the second stage, we estimate the structural parameters, i.e. the generation-specific cost

of developing technologies, parameters from the cost functions and the distribution of private

shocks. We rely on the fact that firms are rational and forward-looking, i.e. they compare their

discounted profit streams given the evolution of the state vector and their policy functions.

The discounted expected profits of entering at different states is simulated for many different

paths. The distance between those calculated profit streams and the observed observed entry

rates at those states is minimized, which allows us to recover the sunk cost distribution. We

use a simulated minimum distance estimator and look for those parameters that provide the

9Note that a fixed effects estimator violates the strict exogeneity assumptions. Feedback effects resulting

from contemporary production to future experience in production results in past experience being sequentially

exogenous, which causes inconsistent estimates. We therefore use a GLS estimation.
10We also compared the results with the GMM estimator by Arellano and Bond (1991) which uses lagged

levels as instruments. The problem with this estimator is that instruments are not strongly correlated as the

series on production is highly persistent, so that lagged levels are only weakly correlated with first differences.
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best fit to the data generated by the optimal policies representing the equilibrium outcomes of

profit-maximizing firms, compared to the data generated from suboptimal policies.

We find that the estimator performs well in predicting firms policies as well as the product-

specific sunk costs. Our estimates of sunk costs get close to the few reported establishment

costs. They are increasing over different product generations, providing evidence for increas-

ingly required investments for developing new technologies.

Related literature (e.g. Asplund and Nocke, 2006), emphasizes the impact of fixed costs

and market size on entry and exit rates. They show that entry costs are negatively related to

entry and exit rates and that the level of firm turnover increases in market size. Klepper (2002)

investigates common patterns between industries in the evolution of the number of firms over

time. Many industries are characterized by a increase in the number of firms, up to a 3 digit

number at early stages. Afterwards, a sudden shake out lowers the number of firms to a handful

of survivors. Prior literature also pointed out common regularities in firm survival patterns:

earlier entrants have sharply higher survival rates due to higher R&D productivity, caused by

production-scale economics (Jovanovic and MacDonald, 1994) or learning by doing (Dasgupta

and Stiglitz, 1988). Geroski (1995) distills a series of “stylized facts and results” from the

empirical literature on entry. He concludes that entry is less a mechanism for keeping prices

down and more a mechanism for bringing about change associated with innovation. Moreover,

it has been shown that exit rates are higher in more innovative industries.

The remainder of the paper is organized as follows. The next section gives an industry

description providing insight into the development of new process technologies and the data.

Section 3 introduces our dynamic oligopoly model and Section 4 presents the econometric

model. In Section 5 we present the empirical results. We conclude in Section 6.

2 Industry description and data

DRAMs are one of the microelectronics industry‘s highest-volume parts and a key input for

electronic goods, such as computers, workstations, communication systems and graphic subsys-

tems. DRAMs store each bit of information in a memory cell consisting of one transistor and

a capacitor. The capacitor stores data and the transistor transfers data to and from the ca-

pacitor. DRAM chips are produced in batches on silicon wafers. The process of manufacturing

an integrated circuit involves building up a series of layers on a wafer of polycristalline silicon.

The production process requires a complex sequence of photolithographic transfer of circuit

patterns from photo masks onto the wafer and of etching processes. The wafer, once processed,

is cut and the single chips are then assembled. DRAM products are typically classified by the
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number of bits per chip, their capacity of storing memory.

Permanent research effort is required in order to increase the memory of DRAM chips as new

operating systems of electronic products impose a minmium requirement for memory capacity.

According to Moore’s Law, the number of transistors on an integrated circuit doubles every 12

months, resulting in a fourfold increase in bits per chip. The increase in transistors per chip is

mainly due to three factors: reductions in cell size per bit, improved lithography processes and

an increase in die size manufacturability.11

Reductions in cell size per bit increases the number of dies per wafer and is an important

parameter for achieving cost reductions.12 For example, the first generation Pentium used a

0.8 micron circuit size, and required 296 square milimeters per chip. The second generation

chip had the circuit size reduced to 0.6 microns, and the die size dropped by 50% to 148 square

milimeters. Investments into smaller die sizes became more relevant throughout generations in

order to achieve further cost reductions. Whereas the die size for the 64K generation remained

rather constant withing the generation, it shrank three to four times for the 4MB and 16MB

generations. The die sizes in the 64MB, 256MB and 512MB generations shrank between seven

to nine times. Every DRAM generation begins by scaling lithography by a factor of 0.7 in

order to further reduce the die area, see also Table 1a. Lithography processes are permanently

improved. For instance, traditional dry lithography uses air as the medium to image through

masks. Immersion lithography uses water as the medium between the light source and wafer.

The wavelength of light shrinks through water so it is able to project more precise and smaller

images on the wafer.

In the late 90’s further reduction in cell size became much harder to achieve because of the

increased number and complexity of variables affecting cell structures: further improvements

required the introduction of new cell structures in conjunction with lithography scaling and

advances in doping, etching, planarization, and multilevel metallization. While the development

of chips with faster speeds was important in order to meet increasing capacity requirements

for storing memory, the reduction of power consumption became equally important. Table 1a

11For more details regarding the description of production processes, see also Gruber (1996a), Irwin and

Klenow (1994) and Flamm (1993). Further information regarding the innovation process of new DRAM gener-

ations can be found at El-Kareh and Bronner (1997).
12On March 2nd, 2007, Samsung reported that it begins mass production using 60 nanometer (nm)—class

process technology for its1 GB DRAM chip. Samsung confirmed that use of the new process technology is a

significant milestone in that it increases production efficiency by 40 percent over the 80nm process technology

deployed in DRAM fabrication since early 2006, and offers twice the productivity of 90nm general process tech-

nology. Samsung’s continuous technology migration below 90nm has relied heavily on the company’s extensive

use of three-dimensional transistor technologies to build increasingly smaller chips.
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shows the evolution of different parameters throughout different generations. Note that the cell

size decreases by a factor of 40 from the 4MB to the 1GB chip.

The cost of technology development was estimated at half a billion dollars in the early 90’s

and exceeded a billion dollars in the late 90’s. Required investments for a manufacturing facility

are even larger. Table 1b shows that a plant with a capacity of 30,000 chips per month rose

from US-$ 1/2 billion in 1985 to US-$ 2.5 billion in 1999, and reached about US-$ 5 billion

in 2007.13 Table 2 shows the increase in R&D activity in the DRAM and the semiconductor

industry. The number of patent applications in the DRAM industry increased from 462 in 1989

to 1,214 in 1997.14

Table 3 shows the number of firms producing different generations. The number of firms

increases from 15 firms in the 4K generation to 30 firms in the 4MB and 16MB generations.

Afterwards, the number of firms declined to 20 firms in the 128MB generation and declined

even further to 8 firms in the 1 GB generation, see also Figures 4 and 5 for the evolution of the

number of firms throughout different generations.15

It is well known that the DRAM industry is characterized by learning-by-doing effects,

resulting from the fine-tuning of production processes.16 Despite the rapid reduction in defect

densities, only a small fraction of manufactured DRAM chips will have entirely perfect cells and

peripheral circuits. If all dice with one or more defective cells were to be discarded, the resulting

yield would be too low and the cost per chip prohibitively high. The effective yield will increase

substantially by repairing memories with a limited number of defective cells, mostly using

laser blown fuses. Memory repair increases yield from <1 to >50% throughout the life cycle.

Prior literature assumes that firms move down a cost curve, common to the industry, which

illustrates efficiency effects achieved through learning-by-doing. Depending on firms’ timing

13It is important to note that a firm transfers the intellectual property of its inventions to all its own plants.

Therefore, the R&D investments into inventing a new technology at the plant level are equivalent to those at

the firm-level.
14We would like to highlight the fact, that it is controversial whether patent counts is an appropriate proxy for

representing higher R&D investments. As mentioned earlier, attributing patents to specific DRAM generations

is difficult and causes the problem of retrieving generation-specific R&D investments. Therefore, we will estimate

the development cost of new DRAM technologies as a sunk cost.

15Note that the maximum number of firms has been passed in the 1GB generation, as entry occurs within

the first one or two year after a generation has been launched.
16Note that knowledge may depreciate over time (sometimes also termed forgetting) especially in labor-

intensive industries, such as the aircraft industry, see e.g. Benkard (2000). The semiconductor industry, however,

is a capital-intensive industry that is characterized by cumulative innovation and short life cycles. Forgetting

is therefore not a common phenomenon in this industry.
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to enter a generation they achieve different yield learning since they are at different locations

on the learning curve.17 In order to capture learning effects firms’ experience is proxied using

firms’ past accumulated output. Hence, a firm’s production rate enters costs through experience

and becomes a state variable. Note that firms’ contemporaneous production has an impact on

current prices and profits, as well as an intertemporal impact on their profits through costs.

This fact makes it difficult to separately estimate firms’ static profits from their continuation

values. Given the existence of learning effects our study will account for a dynamic model as

firms follow a dynamic production strategy, i.e. firms’ current production will have an instant

impact on prices and profits, and will increase future experience resulting in future cost savings

(see e.g. Dick, 1991; Fudenberg and Tirole, 1983 and 1986; Majd and Pindyck, 1989; Spence,

1981; and Wright, 1936). Learning-by-doing is an important phenomenon, as it explains the

rapid price decline for DRAMs (see Figure 3).

Table 3 also shows the ordering of firms when they entered and exited a specific DRAM

generation. As the table shows, the order of entering a specific DRAM generation is not closely

related with the probability of surviving a specific generation. This observation is surprising,

since prior literature found that early entry in industries such as the tire, auto, penicilin and tv

industry increases the likelihood of firm survival. Moreover, this fact indicates that firm-specific

deviations from the common industry learning curve plays an important role for explaining

survival and productivity in the DRAM industry. Examples of firm-specific productivities in

developing new technologies are the discovery of new lithography processes, the improvement

of smaler cell sizes and the invention of new cell architectures.

Market demand must also be noted as one important factor having an impact on market

structure. The reason is that in the late 80’s and the early 90’s, the PCmarket was the dominant

market for DRAMs. Approximately 75% of DRAMs were sold to PC clients or servers. For

most of that period, memory upgrades were a critical way to improve PC performance and

to enable the use of new applications. By the end of the 90’s, however, the sizes of operating

systems and of applications were no longer growing as rapidly. Consequently, the dominant

market for DRAM’s did not demand as fast an increase in bits per chip and demand did not

continue growing as much. In the late 90’s the populartiy of mobile phones and playstations

accelerated the demand for DRAMs again (see Figure 2 for the industry output cumulated over

product generations).

Our study uses firm level and industry level information on prices and quantities for different

17The learning-by-doing aspect is generation-specific, as production takes place in specific plants using spe-

cific production processes. Irwin and Klenow (1994) confirmed this fact by finding only low, sometimes even

nonexisting intergenerational spillovers.
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DRAM generations which are compiled by Gartner Inc. The data cover firm and industry

units shipped, the average selling price, and the number of firms in the market and run from

January 1974 until December 2004 on a quarterly basis. The data set encompasses 12 product

generations, namely the 4K, 16K, 64K, 256K, 1MB, 4MB, 16MB, 64MB, 128MB, 256MB,

512MB, and 1GB generation. Figure 1 shows the industry shipments (in mio.) across different

generations, i.e. the 4K till the 1GB generation. The figure illustrates that every DRAM

generation is characterized by a product life cycle, that lasts for approximately 5 years in the

80’s and shortened to 3-4 years in the 90’s. Recently developed products and a higher demand

from downstream industries for more advanced chips is one reason why product cycles became

shorter. Shorter life cycles also put higher pressure on firms to recoup research and development

cost within a shorter time period.

We also use patent data taken from the NBER patent database established by Hall, Jaffe,

and Trajtenberg (2001). The patent database includes patents that were applied for and sub-

sequently granted in the U.S between 1963 and 2002. We use U.S. patents because the U.S. is

the world’s largest technology marketplace and it has become routine for non-U.S. based firms

to patent in the U.S., see also Albert et al. (1991). The database holds detailed information on

approximately 3 million utility patents. The patent data themselves were procured from the

Patent Office. We identified the patents that each DRAM producer holds in the DRAM mar-

ket. Table 4 provides summary statistics of some of our variables that we use in our empirical

analysis.

In a first step of our empirical analysis, we investigate if learning effects are prevalent in our

data set and if the magnitude of learning effects is comparable throughout different generations.

We test for learning by doing accounting for economies of scale, using past cumulated and

current industry output, respectively. We regress the average prices on a constant, cumulated

industry output, current industry output, and a set of dummy variables for different generations.

Table 5 shows the results when we specify learning effects to be identical across generations. We

apply Ordinary Least Squares and Two Stage Least Squares regressions, in which we instrument

for the current industry output using the price for material, which is the world market price of

silicon compiled by Metal Bulletin. We also use summary statistics from the supply side such

as the number of firms in the market. We are able to use more than 500 observations and get R

squares higher than 80%. A negative sign for the cumulated industry output is consistent with

learning by doing. The negative sign on current industry output relates to increasing economies

of scale in the industry. Note that we also estimate the learning effects separately for every

generation. Our results confirm significant learning effects, which are comparable in magnitude

to earlier findings. We also tested and can confirm that the magnitude of learning effects are
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similar across generations. This result allows us to pool our data across different generations,

which enables us to use a larger number of observations in our empirical analysis.

3 Dynamic oligopoly model

This section outlines a model of dynamic competition between oligopolistic firms in the DRAM

industry. The model is formulated as a state game model. A firm’s action in a given period

influences not only its own and rival firms’ current profits, but also its own and rival firms’

future states. Besides market demand and market structure, an important state that affects

current and future profits is a firm’s cost structure.

The cost structure depends on produced output, input prices, a firm’s experience in the

production process, and on its productivity. Experience is determined by learning-by-doing

and spillovers. The first component is usually modeled as own cumulated past output, and the

second component is usually modeled as other firms’ cumulated past output. A firm’s output

decision is therefore an investment into experience and influences its own and rival firms’ cost

structure.

We use a discrete-time infinite horizon model with time indexed by t = 0, 1, . . . ,∞. There
are I firms denoted by i = 1, . . . , I. The set of firms includes potential entrants and incumbent

firms. In each period, each firm i earns profits equal to πit = π(qit, q−it, st, vit), which are a

function of own actions qit, other firms’ actions q−it, a vector of state variables st describing the

market conditions and a private shock vit describing a firm’s productivity which shifts marginal

costs.

Relevant state variables are market demand dt, input prices mt, the set of producing firms

nt and a firm i’s experience exit, i.e. st = (dt,mt, nt, exit). Market demand dt and input prices

mt are determined by a common shock. The number of firms in the market nt is determined by

the exit decision of incumbents and the entry decision of potential entrants. Incumbent firms

decide whether to stay in the market and produce qit or to exit and receive a fixed scrap value κ.

Potential entrants decide whether to enter the market and to produce output qit or to stay out

of the market and produce no output. A firm i’s experience exit has two components. The first

component is a firm’s proprietary experience xit and the second component is spillovers x−it
that firm i receives from other firms. A firm i’s proprietary experience xit is its own cumulated

past output, such that xit =
Pt−1

τ=1 qiτ . Or expressed differently, xit = xit−1+ qit−1 with xi0 = 0,

where we assume there is no proprietary experience in the beginning of the product cycle. A

firm i’s spillovers x−it are other firms’ cumulated past output, such that x−it =
Pt−2

τ=1

P
j 6=i qjτ .

Or again expressed differently, x−it = x−it−1+
P

j 6=i q−jt−2 with x−i0 = 0, where we assume there
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are no spillovers in the beginning of the product cycle. Potential entrants have no experience

and receive no spillovers.

Before firms simultaneously set their action by choosing their output qit, each firm i observes

a private shock vit, independently drawn from a distribution Gi(.|st). The private shock may
derive from variability in production costs, cit. Firms productivity is modeled as a first order

autoregressive process ωit = ρωit−1+ vit, where vit is independently identically distributed with

zero mean and a constant variance σ2v, ρ is the persistence or autocorrelation parameter. We

assume a stationary first order autoregressive process, i.e. |ρ| < 1. The key difference between
w and v is that the former is a state variable which influences firms decisions, and the latter

is an independent contemporaneous shock. The autocorrelation reflects the fact that firms

that are more productive today are more likely to be more productive tomorrow. Since a firm’s

productivity is correlated over time, it represents a serially correlated unobserved state variable.

Each potential entrant additionally observes a shock uiτ , independently drawn from a dis-

tribution Hi(.|sτ i), where τ i is the period firm i enters the market. Entering firms immediately

start to produce. This means that a firm that enters the market observes two private shocks.

As the shocks are private information firms solve for a Bayesian Nash equilibria.

Each firm i maximizes its future discounted payoffs conditional on the initial state s0, the

initial value of private shock vi0 and the initial value of sunk cost ui0:

Ev,u
∞X
t=0

βt[πi(qit, q−it, st, vit, uit)|s0, vi0, ui0] (1)

where β ∈ (0, 1) is the discount factor, which is set equal to 0.95.

3.1 Profits in the product market

A firm i’s per period profits in the product market are revenues minus cost

πit(qit, q−it, st, vit) = pt(qt, zt, dt)qit − c(qit,mt, xit, x−it, ωit−1, vit)qit (2)

where p(qt, zt, dt) is the industry price as a function of the industry output qt =
Pnt

i=1 qit, observ-

able demand shifters zt and a random shock dt. c(qit,mt, xit, x−it, ωit−1, vit) is firm i’s marginal

cost as a function of its output qit, input prices mit, proprietary experience xit, spillovers x−it,

unobserved state ωit−1 and firm i’s private shock vit. We specify the inverse demand function

pt as follows:

pt(qt, zt, dt) = dtq
δ1
t zδzt , (3)
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where δ1, the elasticity of the inverse demand, and δz are coefficients to be estimated. We

assume there is no firm specific uncertainty about demand as this would not be identified from

a private shock in marginal cost. We specify a firm i’s marginal costs as a linear function of its

arguments:

c(qit,mt, xit, x−it, ωit−1, vit) = θ0 + θ1qit + θ2mt + θ3xit + θ4x−it + ρωit−1 + vit, (4)

where we denote the vectors of coefficients with θ and ρ, and vit is drawn from a standard

normal distribution. The initial condition for ωi is derived from the fact that firms do not

produce output qi before the product cycle starts.

3.2 Entry and exit cost

A potential entrant incurs entry cost when it enters the product market and its profits in the

first period of market appearance are

πi(qiτ i , q−iτ i , sτ i , viτ i , ui) = pt(qτ i , zτ i , dτ i)qiτ i − c(qiτ i ,mτ i , viτ i)qiτ i − uiτ i , (5)

where τ i is the period firm i enters the market and ui is the privately observed random shock

before entering the market. Learning-by-doing xi, spillovers x−i, the unobserved state ωi are

equal to zero at the time of entering the market.

The profits of an incumbent firm that leaves the market are

πi(qiTi , q−iTi , sTi , viTi) = pt(qTi , zTi , dTi)qiTi − c(qiTi ,mTi , xiTi , x−iTi , ωiTi−1, viTi)qiTi + k

where Ti is the period firm i leaves the market and k is the scrap value.

3.3 Transition of states

For a complete description of the state game, the transition between states has to be defined.

Our state variable market demand dt is determined by a common period-specific shock and

therefore does not require any further assumptions on state transitions over time. However,

our state variables experience xit and spillovers x−it are influenced by past actions. The laws of

motion for those state variables are deterministic and described by cumulated past own output

xit+1 = xit + qit (6)

and the second law of motion is cumulated past output of other firms

x−it+1 = x−it +
X
j 6=i

qjt−1. (7)
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For (6) and (7), the initial condition is that the respective state is equal to zero. There is no

output production before the product cycle starts and no experience and no spillovers at the

beginning of the product cycle.

This leaves us to define the transition of the number of firms in the market nt from time t

to time t+ 1. The number of firms in the market nt+1 is

nt+1 = nt + net − nxt, (8)

where net is the number of entering firms and nxt the number of exiting firms. The number

of entering firms net depends on the distribution of ui. A firm i enters, when future expected

profits are positive. The number of entering firms nxt depends on the scrap value k. A firm i

exits, when future expected profits are lower than the scrap value which is fixed but could be

estimated in the second stage.

3.4 Firms’ strategies

Firms use Markov strategies qit = σi(st, vit), i.e. a firm’s output qit is a function of the state

variables st and the private shock vit, generating Markov-perfect Nash equilibrium. Rival firms’

strategies are denoted by q−it = σ−i(st, v−it). If behavior is given by a Markov strategy profile

σ = (σi(st, vit), σ−i(st, v−it)), firm i’s expected profits given the state variables st can be written

recursively:

Vi(st;σ) = Ev,u[πi(σi(st, vit, ui), σ−i(st, v−it, u−i), st, vit, ui)

+β

Z
Vi(st+1;σ)dP (st+1|σi(st, vit, ui), σ−i(st, v−it, u−i), st, vit, ui)|st], (9)

where Vi(st;σ) is firm i’s ex-ante value function. A strategy profile σ is a Markov perfect

equilibria if, given the strategy profile of rival firms σ−i(st, v−it, u−i), firm i does not want to

deviate from its strategy profile σi(st, vit, ui), i.e.

Vi(st;σ) ≥ Vi(st;σi0, σ−i), (10)

where σi0 is an alternative strategy for firm i.

The structural parameters of our model are the discount parameter β, the profit functions

π1, . . . , πI , the distribution of private shocks G andH following a standard normal distribution.

To obtain estimates of these parameters, we build on the estimation method developed by

Bajari, Benkard and Levin (2007). This is a two-stage procedure. The first stage includes the

estimation of the policy function σi, and the value functions Vi. The second stage estimates the

profit function πi and the distribution Gi. We assume that a firm’s productivity is unobserved.

We therefore extend their estimation method to allow for unobserved state variables.
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4 Econometric model

In this section we present the econometric model. As mentioned above we follow the two

step algorithm developed by Bajari, Benkard and Levin (2007).18 The estimator relies on the

fact that firms are rational and forward-looking, i.e. firms compare their discounted profit

stream given the evolution of the state vector and their policy functions. In the first step,

we estimate the policy functions and the value function. The second step assumes that the

policy functions are parameterized by a finite vector that can be consistently estimated at the

first step. This assumption permits a non-parametric first stage with discrete action and state

variables or a parametric first stage with continuous action and state variables. As described

above, our model allows for continuous action and state variables. To parameterize the first

stage, we thus have to assume that the functional form of the policy functions is known or can

be sufficiently approximated by polynomials. For the exposition of the estimation algorithm,

we assume it is a linear function. The estimation algorithm is however equally applicable to

more complicated functions of however known form. For the estimations, we try various higher

order polynomials to approximate an arbitrary non-linear policy function and finally use the

specification with the highest fit. Since some of the generations are not long enough in the

market to generate a sufficiently large time series, we will not estimate the dynamic model for

each generation separately, but rather pool the data and use dummy variables to account for

generation-specific effects. We also would like to refer to our estimation results displayed in

Tables A which provide support for learning effects. Moreover, the results confirm that the

magnitude of learning effects are comparable throughout different generations. Note, however,

that we also estimated the learning effects separartely for different generations.

4.1 Estimation of the first stage

In the first stage, we estimate various policy functions. We estimate the entry decision of

potential entrants, the exit decision of incumbent firms and we also estimate the production

decision of incumbents. For the incumbents’ output function, it is necessary to obtain estimates

for the demand (3).

18Note that we are interested in analyzing the competitive degree in the DRAM market and would like

to estimate the entry and exit costs in a dynamic model allowing for observed and unobserved serially state

variables. Examining responses to policy or environmental change, would be an interesting task as well, but

goes beyond the scope of the paper.
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4.1.1 Demand

We specify the demand function log-linearly as

ln(qt) = δ0 + δ1 ln(pt) + δ2 ln(p
S
t ) + δ3 ln(GGDPt) + δ4timet +

15X
l=5

δlDl + dt (11)

where we denote the vector of coefficients with δ. qt is the market output of the chip at time

t. pt is the average selling price of a chip at time t, and pSt is the average selling price of

the closest substitute. For the price of the closest substitute we construct a price index. For

each DRAM generation, we identify corresponding substitute DRAM generations and use the

average weighted prices of these generations as the price of the closest substitute. GGDPt

represents the growth rate of the GDP, which we use as an exogenous demand shifter. Time

is a time trend, Dl presents a dummy variables for every generation, where the 4K generation

is used as the reference. dt is a sequence of independently distributed normal variables with a

mean of zero and a constant variance σd. We predict a negative sign for the own price elasticity

of demand δ1. The cross-price elasticity δ2 is supposed to be positive (negative) if the respective

products are substitutes (complements). We further await a positive sign for the demand shifter

δ3. The expected sign of the time trend coefficient δ7 is supposed to be negative. It captures

the effect of the time length that a particular generation has been in the market.

4.1.2 Incumbents’ output policy function

Firm i’s policy function σi is a function of the state variables st and the private shock vit in

marginal cost, i.e. qit = σi(st, vit, ui). If we assume that the policy function is log-linear in

the state variables and in the private shock and if we implement the first order autoregressive

process of the firm-level productivity, the policy function of incumbent firms is equal to

ln(qit) = γ0 + γ1d̂t + γ2 ln(mt) + γ3 ln(nt) + γ4 ln(xit) + γ5 ln(x−it) + γ6timet (12)

+ γ7wit−1 +
18X
l=8

γlDl + vit,

where we denote the vector of coefficients with γ, qit represents firm i’s output at time t and d̂t
is the contemporary demand shock obtained as the residual of (11). The variable mt represents

the price of silicon in period t, nt stands for the lagged number of firms, xit and x−it represents

the cumulated past output of firm i and all other firms, respectively. The time variable and

the dummy variables are defined as in the demand equation. Note that we estimate a pooled

regression in order to be able to use more observations for our variables of interest. Therefore,
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we assume that our right hand side variables have an equal impact on different generations. The

dummy variables, however, will absorb any time invariant differences between the generations.

Finally, firms’ productivity is modeled as a first order autoregressive process ωit = ρωit−1+

vit. As mentioned in the introduction, we will not account for time invariant unobserved

heterogeneity as feedback effects occurring from contemporary production to future experience

in production results in past experience being sequentially exogenous. Since the unobserved

heterogeneity, or any contemporaneous error, determines the contemporaneous production,

it will enter production experience in the next period. Hence, the contemporaneous error

and experience in the future are correlated, which violates the strict exogeneity assumption

and causes inconsistent estimates when we account for fixed effects. There are many models,

including the AR(1) model, for which it is reasonable to assume that the contemporaneous

error is uncorrelated with current and past values, but will be correlated with future values of

the regressor (sequential exogeneity). To eliminate the unobserved heterogeneity, we also use

other techniques than fixed effects, e.g. we estimate the equation in first differences.

We assume that a firm i’s private shock vit in marginal cost is uncorrelated with the state

variables st, st−1, . . . , s0 such that

E[vit|st, st−1, . . . , s0] = 0.

We estimate the first order autoregressive process applying a GLS estimator and using instru-

ments for past production experience. We would expect positive signs for the coefficients γ2,

γ4, and γ5 and a negative sign for γ7.

We also directly control for the serially correlated unobserved productivity by applying a

lagged dependent variable model, or an AR(1) model. In this case the policy function looks as

follows:

ln(qit) = eγ0 + eγ1d̂t + eγ2 ln(mt) + eγ3 ln(nt) + eγ4 ln(xit) + eγ5 ln(x−it) + eγ6timet (13)

+ eγ7 ln(qit−1) + 18X
l=8

eγlDl + ci + vit,

where the vector of coefficients is denoted by eγ, and ci denotes firm invariant unobserved

heterogeneity. If eγ7 6= 0, then qit exhibits state dependence, the current state depends on the

last period’s state. Note that we have a feedback structure as described above, such that strict

exogeneity fails in this case as well. We instrument for the past dependent variable qit−1 as well

as for firm-level past experience xit, by using further lags of the variables. Hence, we use an

IV estimator in levels. Note that firms are facing the same initial condition at the beginning

of the very first generation, which is qio = 0.
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Finally, we also rewrite the policy function in first differences in order to eliminate the

unobserved heterogeneity. This implies the orthogonality conditions E[w0is∆vit] = 0 for s < t,

where w are the sequentially exogenous regressors conditional on the unobserved effect c. So

at time t we can use w0it−1 as potential instruments for ∆wit, where w0it−1 = (wi1, ..., wit) . The

fact that w0it−1 is uncorrelated with ∆vit opens up a variety of estimation procedures. For

example, a simple estimator uses lagged differences ∆wit−n (for n > 1) as the instruments for

∆wit, however we can also use lagged levels wit−n.

We could apply the Arellano-Bond (1991) estimator for dynamic panel data. The estimator

uses the Generalized Method of Moments (Hansen, 1982), and is called “difference GMM”

estimator. It especially holds for small T and large N . If T is large, the dynamic panel bias

becomes insignificant, and a fixed effects estimator works. If N is small, the Arellano-Bond

autocorrelation test may become unreliable. As differentiating removes much of the variation

in the explanatory variables, the Arellano-Bond (1991) estimator may exacerbate measurement

errors in the regressors. In addition, the differentiated regressors need not be highly correlated

with the instruments. We therefore apply the Blundell-Bond (1998) estimator, which uses the

levels and differences of the lagged dependent variable in the set of instruments.

4.1.3 Entry and exit

To obtain estimates for the distribution of ui and κ, we estimate probit models. Potential

entrants make their decision to enter dependent on the state variables dt and nt, but not on

xit and x−it as they have not gained either propriety experience or gained experience through

spillovers:

P (entryτ i) = α0 + α1d̂τ i + α2 ln(mτ i) + α3 ln(nτ i) + α4 ln(xiτ i) + α5 ln(x−iτ i) (14)

+ α6timeτ i +
17X
l=7

αlDl + uiτ i ,

where we denote the vector of coefficients with α, and d̂ is the demand shock obtained as the

residual of (11).

Incumbent firms face the decision, whether to stay in the market or to exit. Their decision

to exit the market depends on all state variables

P (exitTi) = λ0 + λ1d̂Ti + λ2bωiτ i + λ3 ln(mTi) + λ4 ln(nTi) + λ5 ln(xiTi) (15)

+ λ6 ln(x−iTi) + λ7timeTi +
18X
l=8

λlDl + κTi ,
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where we denote the vector of coefficients with λ and bωit = ρbωit−1 + vit is the productivity

shock obtained as the residual of the output policy function.

Given (14) and (15), we calculate the number of firms in the market by assuming that when

the predicted probability is larger than 0.5 the firm enters or exits the market, respectively.

4.1.4 Value functions

Estimation of the value functions is based on the estimated policy functions and the transition

between states. From estimating (12), we obviously get qit = q̂it+ vit, which we use to simulate

a sample of optimal policies

qitl = q̂it + vitl, (16)

where at each point in time t = 0, 1, . . ., we draw a random sample of vitl with l = 1, . . . , L

from the distribution Gi(.|st) and calculate simulated profits πilt(qitl, q−itl, stl, vitl). We use (8)
to move from one state to the other w.r.t. the number of firms and obtain for each simulation l

nt+1l = ntl + netl − nxtl,

where netl and nxtl are determined by (14) and (15) and a random draw uitl from Hi(.|st) with
l = 1, . . . , L. We then use (6) and (7) to move from one state to the other w.r.t. proprietary

experience and spillovers and obtain for each simulation l, xit+1l = xitl + qitl and x−it+1l =

x−itl +
P

j 6=i qjt−1l. Finally, we use the specifications for demand (3) and the marginal cost

function (4) and calculate simulated profits as

πitl = p̂tlqitl − (θ0 + θ1qitl + θ2mtl + θ3xitl + θ4x−itl + ρωit−1l + vitl) qitl,

where δ̂1 is an estimate for the elasticity of demand obtained from (11). To obtain an estimate

for the value function, we add up profits πitl over t and take the mean of the simulated profits

πil over l such that

Ṽi(st;σi, σ−i, δ, γ, α, λ, θ) =

1

L

LX
l=1

∞X
t=0

βt{p̂tl qitl − (θ0 + θ1qitl + θ2mtl + θ3xitl + θ4x−itl + ρωit−1l + vitl) qitl}, (17)

where we assume that for large enough t firms do not produce anymore.
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4.2 Estimation of the second stage

To recover the structural parameters θ of the marginal cost function, we exploit the equilibrium

condition (10). We construct alternative policies k = 1, . . . ,K that are equal to

qitk0 = qit + �,

where � is a random draw from some arbitrary distribution function F . We calculate alternative

profits given the alternative strategy qitk0

πitk0 = p̂tk qitk0− (θ0 + θ1qitk0+ θ2mtk + θ3xitk + θ4x−itk + ρωit−1k + vitk)qitk0.

An estimate for the value function given the alternative strategy is

Ṽi(st;σi0, σ−i, δ, γ, α, λ, θ) =
∞X
t=0

βt{p̂tk qitk0− (θ0 + θ1qitk0+ θ2mtk + θ3xitk0+ θ4x−itk + ρωit−1k + vitk)qitk0}. (18)

This gives us K × eVi(s;σi0, σ−i, δ, γ, α, λ, θ)’s, i.e. K times profits from alternative strategies.

When we can rewrite the equilibrium condition (10) as

Vi(st;σi, σ−i, δ, γ, α, λ, θ) ≥ Vi(st;σi0, σ−i, δ, γ, α, λ, θ),

and exploit the linearity of θ in firm i’s profit, we can define the function f as follows

f(y; δ, γ, α, λ, θ) := [Wi(st;σi, σ−i, δ, γ, α, λ)−Wi(st;σi0, σ−i, δ, γ, α, λ)] θ ≥ 0.

We then define the function

Q(δ, γ, α, λ, θ) :=

Z
(min{f(y; δ, γ, α, λ, θ), 0})2dF (x),

where the inequality defined by y is satisfied at (δ, γ, α, λ, θ), if f(y; δ, γ, α, λ, θ) ≥ 0. When we
define the function ef(y; δ̂, γ̂, α̂, λ̂, θ) as the empirical counterpart of f(x; δ, γ, α, λ, θ) computed
by replacing the Wi terms with simulated estimates fWi, we can define

Qk(δ, γ, α, λ, θ) :=
KX
k=1

{min [ ef(y; δ̂, γ̂, α̂, λ̂, θ), 0]}2.
By using the minimum distance estimator we obtain a value for θ.

In order to estimate the sunk cost we rely on the fact that the firms are rational and forward-

looking. They are able to calculate their discounted profit stream given the evolution of the

state vector and their policy functions. If a firm does not enter, even though the expected profits
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are positive, it implies that the draw on sunk cost exceeded the value generated in the market.

Hence, the discounted expected profits of entering at different states is simulated for many

different paths. Averaging those gives the theoretically expected profits of entering at different

states. The distance between those calculated profit streams and the observed observed entry

rates at those states is minimized, which gives allows us to recover the sunk cost distribution.

Finally, we calculate the sunk costs by calculating the expect discounted values at different

states and compare them to entry observations at those states. If entry occurred at those states

it indicates that sunk costs are lower than the generated discounted profits at this stage and

vice versa.

5 Estimation results

This section discusses the estimation results. We start with the estimation results of the demand

function. We then proceed with the incumbents’ output policy function, and the entry and exit

distribution. Finally, we describe the structural parameters.

Demand Equation To obtain estimates for the coefficient vector δ, we estimate industry

demand (11) using ordinary least squares as well as two stage least squares. In the latter case,

we instrument the average selling price in the demand equation summary measures from the

supply side, like the number of firms in the industry, cumulated industry output, and the price

of silicon — all variables in logarithm.

The estimation results of the demand equation are shown in Table A. The results using the

ordinary least squares estimator as shown in column 1, whereas the results for the 2 stage least

squares estimator as depicted in columns 2 and 3. Since the results of the two estimators are

very similar, we only describe on the results using the instrumental variable estimator.

The first stage equation (column 2) represents a good fit with an adjusted R-square of about

0.94. A test for the joint significance of the instruments indicates that the number of firms in

the industry, cumulated world output and the price of silicon are highly correlated with the

average selling price. With a value of 73.41 for the F-statistics, we reject the null hypothesis

that the estimated coefficients of these variables are equal to zero. A Hausman test indicates

the necessity to instrument the average selling price in the demand equation. The value of

the χ2 distributed test statistic is equal to 60.55, which is larger than 18.31 — the 5% critical

value with 11 degrees of freedom. Two of our three instruments are significantly different from

zero. The negative sign on the cumulated industry output is meaningful as higher cumulated

industry output lowers marginal costs in the presence of learning-by-doing, which shifts the

20



supply curve downwards resulting in lower equilibrium prices. The positive sign on the price of

silicon indicates that higher factor prices shifts the marginal cost curve upwards which results

in higher equilibrium prices.

Turning to the second stage of the instrumental variable estimator (column 3), the R-square

of about 0.71 confirms a high explanatory power of the estimation. All variables are significantly

different from zero at least at the 5% level. The estimate of the average selling price of a chip

is negative and significantly different from zero, indicating a negative own price elasticity of

demand. The magnitude of -3.03 represents the fact the DRAM market is characterized by a

highly elastic demand curve. The estimate of substitute DRAM chips, is significant and positive,

indicating a positive cross-price elasticity and indicating that substitute DRAM chips represent

substitutes. Moreover, the estimate of 1.85 also confirms that the price of substitute DRAM

chips has a lower impact on the DRAM demand than the price of DRAM chips themselves. The

demand shifter GGDPt is positive and significantly different from zero, providing evidence that

a higher growth in GDP shifts the demand outwards. The negative time trend is consistent with

previous findings that buyers substitute away from one generation to the next as time elapses.

The dummy variables for the different generations are all highly significant and positive. The

magnitude of the dummy variables is increasing throughout all the different generations, which

underlines the increasing importance of using DRAM chips in application specific electronic

products. Moreover, it is interesting to note that the increase in dummy variables increases

by a magnitude of 3 to 4 up until 16 MB generation. Thereafter, however, the increase in the

dummy variables diminishes to 1. This results emphasizes that the growth in market demand

increased over different generations, but the growth in demand slowed down towards the more

recent generations.

Policy function We estimate incumbents’ output policy (12) with general least squares to

obtain estimates for the coefficient vector γ. The results are shown in Table A.19 We estimate

equation (12) in by accounting for a first-order autocorrelation process, see column 1. We also

estimate firm’s output policy function by applying a lagged dependent variable model, or an

AR(1) model, in order to control for the serially correlated unobserved productivity as shown in

(13). Finally, we apply a first difference estimator accounting for a first-order autocorrelation

process in the unobserved state variable ωi (columns 3 and 4, respectively). Column 3 display

the estimation results for the Arellano-Bond (1991) estimator which uses lagged dependent

variables in levels. Column 4 displays the results for the Blundell-Bond (1998) estimator,

which uses the levels and differences of the lagged dependent variable in the set of instruments.

19Table A shows first stage results for the output policy function.
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Note that the last two estimators eliminate the unobserved heterogeneities by applying first

differences.

Our pooled regression allows us to use approximately 3,500 observations. The regression

estimations for the instrumental variable estimations illustrates a remarkably good fit, it has R-

square of 0.89. The estimates for the instrumental variable regressions in differences performs

quite poorly and also carries parameter estimates that are sometimes counterintuitive. The

problem with the first difference estimators is that the instruments are not strongly correlated as

the series on production is highly persistent, so that lagged levels are only weakly correlated with

first differences. The instrumental variable estimator in levels (column 2) fits the expectations

of our model the best. The observed serially correlated variable, cumulated past output, which

captures the learning-by-doing effects is positive and significant. This result emphasizes the

importance of learning-by-doing in this industry. More experience in production increases

efficiency and increases output. The lagged output carries a positive significant sign which

shows that a first-order autocorrelation process is present in the data. We can confirm that

correcting for serially correlated unobserved state variable, e.g. firm-specific productivity is

important to control for. It confirms our notion that firms are able to react according to the

private shocks they receive in the short run. The positive demand shock indicates that firms

are able to increase their production. The negative sign on the price of material confirms that

higher factor prices increase marginal cost and lower firm level output. The positive sign of the

number of firms in the market illustrates that more firms in the market increase the competitive

pressure in the market. The dummy variables for the different generations as well as the time

trend turn out to be highly significant.

Entry and exit distribution We estimate the entry distribution (14) and exit distribution

(15) with probit models to obtain estimates for the coefficient vectors α and λ. The results are

shown in Table A. The results for the entry regression are shown in the first column.

The positive coefficient on number of firms is insignificant. However, the sign indicates the

fact that few early movers enter at the initial time periods, whereas the majority of firms enters

when the life cycle approaches the matured phases. This entry pattern emphasizes the fact that

firms need to come up with a new technology to enter a new technology, and only few firms are

clearly ahead of others. This results reinforces the existence of spillovers in the market, which

make it difficult to protect flows from research and development. The time trend shows that

the number of entering firms increases over the life cycle of a generation, which is intuitive as

we include the whole time span over the life cycle for most generations. An interesting results

is that the dummy variables are negative and become even more negative throughout different
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generations. This result shows that entry became less likely over different generations given

generation-specific fixed effects, which is an indication that entry costs increased throughout

different generations. An increase in sunk costs would be supported by the engineering litera-

ture. Slightly surprising is the negative sign of the demand shock.and the positive coefficient

on the price of silicon.

Turning to the results for the exit equation (columns 2-4), the demand and productivity

shock carry negative signs. The results confirm that negative productivity shocks foster firm’s

exit.

Structural parameters Finally, we are interested in recovering the structural parameters θ

and ρ from the marginal cost function (4) as well as estimating the sunk cost in the different

generations. As described above, we exploit the equilibrium condition (10) and construct for

each simulated policy (16) an alternative policy. We compared the simulated value functions

based on optimal strategies with the simulated values based on alternative non-optimal strate-

gies and minimize the deviations of those to recover the structural parameters. We use 10,000

simulations and without firm-specific and product-specific fixed effects in the marginal cost

function.

As shown in Table A, the estimation results are plausible. We are able to use 304 observa-

tions and our structural parameters are all highly significant at the 1% level. We find that the

cost function is characterized by increasing economies of scale. Moreover, we can confirm sig-

nificant learning-by-doing effects and spillovers being prevalent in the industry which lower the

marginal costs. Our estimate for sunk costs over all generations are about 1.3 billion US-dollars

and get close to what has been reported in business reports. The standard deviation is about

2.2 billion US-dollars, which indicates that sunk cost over different generations do fluctuate a

lot. We can also confirm increasing sunk cost over the first part of the different generations.

However, we are currently facing the problem that some estimated sunk costs for the latest

generations are decreasing. We think that we may not have enough data to accurately estimate

the sunk costs for the latest generations. The expected discounted profits are not accurate in

this case as the life cycles did not even reach the peak yet. Since the discounted profits are

compared to the entry probabilities we may get distorted sunk cost estimates. We contemplate

to possibly correct for this truncation problem.
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6 Conclusion

This paper contributes to empirical regularities on market structure. Seminal contributions

highlight the interdependence between innovation, growth, entry and exit. The main interest

of our study is to analyze the impact of innovation on firms’ entry and exit in R&D intensive

industries, such as the DRAM industry. We are especially interested in explaining why the

number of firms in the DRAM industry follows an inverse U-shape throughout generations.

This study concentrates on examining to what extent increasingly required investments for

the exploration of new technologies may drive firms’ entry and exit. The challenging task

is the difficulty to find data for product- or generation-specific investments in research and

development. We overcome this problem by treating the investment into a new technology as

a sunk cost and infer those from firms’ equilibrium behavior in different DRAM generations.

We estimate a dynamic model accounting for firms’ entry, exit, and intertemporal production

decisions in an oligopolistic market structure, using the estimator by Bajari, Benkard and

Levin (2007). A serially correlated unobserved state variable, i.e. firm-specific productivities,

is incorporated into the production policy and estimated using different instrumental variable

estimators.

Our sunk costs estimates are getting close to the reported establishment plant costs. We

find that the exploration of new technologies became increasingly expensive throughout different

generations. We also find that the growth in market demand increased throughout different

generations, but at a declining rate. The increase in demand attracts more firms to enter

the market, especially for early generations when it dominated the increase in investments

in research and development. For more recent generations, however, the investment in new

technologies became increasingly expensive such that it dominated the increase in demand.

Firms were not able to cover the required investment from the generated profit stream and

decided to exit the market. Consequently, the inverse U-shape in the industry can be explained

by the interdependence between the growth in market demand and the investments into new

technologies, which became increasingly expensive.

Our study confirms the importance to account for serially correlated firm specific produc-

tivity. We find that deviations from the common learning curve captured by firm-specific

productivities explain firms survival in the market and the likelihood to enter new DRAM

generations. Therefore, the likelihood to stay in the DRAM market is not entirely due to first

mover advantages by entering the product market and moving down an industry learning curve.

Firms being characterized by low investment into improving lithography processes, reducing

cell sizes etc, are more likely to not being able to keep up with their competitives and not be
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able to enter the next DRAM generation.

For future research it would be interesting to further investigate the impact of entry and

exit on the competitiveness of markets. This would be especially interesting with respect to

evaluating different firm size distributions in the market, the reallocation of output between

incumbents and the impact on the competitiveness and performance in the product market.

These questions, however, would be beyond the scope of the paper.
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A Appendix: Tables

Table 1a: DRAM trend from 4MB to 1GB

4MB 16MB 64MB 256MB 1GB Scaling Factor

Year of Introduction 1988 1991 1995 1999 2003

Design Rules (µm) 0.80 0.50 0.35 0.25 0.18 ~0.7

Chip Size (mm2) 87 130 200 300 450 ~1.5

Cell Size (mm2) 11 4.0 1.6 0.6 0.25 ~0.4

Internal Power Supply (V ) 3.3-5.0 3.3 2.5 2.0 1.5 ~0.8
Table A presents the evolution of DRAM technology from the 4MB until the 1GB DRAM chip. Source: El-Kareh

and Bronner (1997).

Table 1b: Number of patents

Time DRAM Patents Semiconductor Patents Total Patents

1989 462 4,063 78,619

1990 526 4,521 81,302

1991 571 5,276 82,939

1992 581 5,313 86,548

1993 636 5,688 89,572

1994 826 7,554 102,553

1995 901 9,250 122,127

1996 1,009 10,390 122,552

1997 1,214 13,507 143,109

1998 1,026 13,080 136,905

1999 868 12,624 125,063

2000 439 9,299 90,591

2001 169 4,443 32,694

2002 22 243 1,397
Table A presents the number of patents for the DRAM industry and semiconductor industry as well as the total
number of patents over time. Source: NBER patent database. The data are described in detail in Hall, Jafee,
and Trajtenberg (2001).
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Table 2: Reported establishment costs

Company Country Products Year Wafers/Month Cost (US-$)

n.a. n.a. 16K DRAM 1985 30,000 0.5b

Fujitsu England 64MB DRAM 1999 15,000 1.4b

IBM France 16/64MB DRAM 1997 20,000 1.0b

Siemens Germany 256MB DRAM 1999 25,000 1.9b

n.a. n.a. 64MB DRAM 1999 30,000 2.5b

Siemens England Memory 1997 25,000 1.6b

Texas Instr Italy 16MB DRAM 1995 15,000 1.0b

LG Wales 256MB DRAM 1998 n.a. 1.3b

n.a. n.a. 1GB DRAM 2007 30,000 5.0b
Table A presents reported establishment costs at the plant-level. Prices are in current US Dollars. Sources:

Shin-Etsu (Interview), Gruber (1996b).
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Table 3: Number of firms and entry and exit ranking in different DRAM generations

Firm (HQ∗) 4K 16K 64K 256K 1MB 4MB 16MB 64MB 128MB
AMD (US) 7,7 8,7 13,3 . . . . . .
Alliance(US) . . . . . 16,13 11,11 . .
AMS (US) 6,1 . . . . . . . .
AT&T (US) . . . 3,3 2,1 . . . .
Fairchild (US) 5,2 4,5 11,1 . . . . . .
Fujitsu (JAP) 8,6 3,7 2,8 2,11 3,9 2,7 1,12 3,10 3,2
Hitachi (JAP) 10,4 5,7 5,7 1,11 2,9 1,5 1,4 5,4 1,1
Hyundai (SK) . . 16,7 12,8 11,9 10,5 6,4 3,4 2,1
IBM (US) . . . . 14,3 13,5 4,4 1,4 .
Intel (US) 1,4 2,7 7,10 6,6 9,2 . . . .
Intersil (US) 6,5 8,1 . . . . . . .
LG (SK) . . . 13,8 13,8 9,3 7,2 3,3 .
Matsushita (JAP) . 10,3 11,13 7,11 6,9 4,13 1,8 8,3 .
Micron (US) . . 9,12 6,7 7,8 8,10 5,12 6,10 3,4
Mitsubishi (JAP) . 7,5 6,9 3,10 4,8 3,5 2,3 3,4 2,1
Mosel Vitelic (US) . . 15,3 10,11 12,8 12,9 9,12 7,7 5,4
Mostek (US) 3,11 1,7 . 4,2 . . . . .
Motorola (US) 5,9 4,7 . 7,5 8,4 5,2 4,1 4,1 .
Ntl. Semic. (US) 5,8 5,7 12,2 6,1 . . . . .
NEC (JAP) 4,5 3,7 4,5 3,11 5,9 1,5 1,4 1,4 2,1
Nippon (JAP) . . . 10,6 8,8 6,3 8,2 9,3 .
OKI (JAP) . . 5,13 3,11 4,9 2,14 1,12 7,8 .
Ramtron Int. (US) . . . . . 15,1 . . .
Samsung (SK) . . 14,13 8,9 7,8 7,5 3,10 5,10 2,4
Seiko Epson (JAP) . . . . . 18,3 12,2 . .
Siemens (EU) . 5,7 8,4 9,6 7,7 4,6 4,5 2,6 4,4
Signetics (US) 9,3 6,2 . . . . . . .
Texas Instr. (US) 2,4 2,6 1,11 5,11 3,6 5,2 3,1 2,2 .
Toshiba (JAP) . 5,7 3,5 3,9 1,8 1,4 1,6 3,5 2,4
Vanguard (US) . . . . . 14,5 7,7 11,9 7,3
Winbond (CH) . . . . . . 14,12 10,10 3,4
Zilog (US) . 5,2 . . . . . . .

# of Firms 15 20 22 23 22 30 30 28 21

Table A presents the order of firms’ entry and exit for the different DRAM generations. ∗ HQ abbreviates head-

quarter with CH=China, EU=European Union, JAP=Japan, SK=South Korea, TA=Taiwan, and US=United

States. Source: Gartner Inc. Note that we only reported those firms that were among the first three firms to

enter or exit at least one of the generations.
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Table 4: Summary statistics over product generations

4K 16K 64K 256K 1Mb 4Mb 16Mb 64Mb 128MB 256MB

market size (avg shipments ) 24,531 131,347 129,351 293,231 337,862 466,018 726,045 756,966 845,398 1,232,064

change in % . 4% -2% 127% 15% 38% 56% 4% 12% 46%

market size (avg revenues ) 60,287 296,361 378,206 839,090 1,924,650 3,879,964 5,420,886 4,909,546 4,237,914 6,844,068

change in % . 392% 28% 122% 129% 102% 40% -9% -14% 61%

avg number of firms 8 13 9 13 14 13 14 12 10 7

change in % . 63% -31% 44% 8% -7% 8% -14% -17% -30%

avg shipments per firm 3,066 10,104 14,372 22,556 24,133 35,848 51,860 63,081 84,540 176,009

change in % . 229% 42% 57% 7% 49% 45% 22% 34% 108%

avg revenues per firm 7,536 22,797 42,023 64,545 137,475 298,459 387,206 409,129 423,791 977,724

change in % . 203% 84% 54% 113% 117% 30% 6% 4% 131%

new entry 15 6 7 5 1 10 3 0 0 0

change in % . -60% 17% -29% -80% 900% -70% -300% 0% 0%

exit 15 21 23 28 27 28 20 17 5 3

change in % . 40% 10% 22% -4% 4% -29% -15% -71% -40%

Table A presents industry-specific averages. Standard errors are shown in parentheses. Prices are in constant

US Dollars as of 2000.
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Table 5: Learning effects in the DRAM industry
Ordinary least squares Two-stage least squares

First stage Second stage

Variable (1) (2) (3) (4)
Constant 6.3308 5.9383 0.1026 5.7870

(55.83)∗∗∗ (53.73)∗∗∗ (0.84) (51.11)∗∗∗

Log(Cumulated industry output) -0.3988 -0.4723 1.0017 -0.5007
(-53.34)∗∗∗ (47.01)∗∗∗ (86.98)∗∗∗ (47.30)∗∗∗

Log(Qutput) 0.1545 0.2140
(9.95)∗∗∗ (12.71)∗∗∗

First difference of Log(GDP) 15.4986
(2.79)∗∗

Time trend -0.1396
(57.83)∗∗∗

Dummy variable for 16K 0.0965 -0.1702 2.2818 -0.2731
(0.83) (1.55) (20.55)∗∗∗ (2.45)∗

Dummy variable for 64K 0.1591 0.1560 3.3861 0.1548
(1.57) (1.69) (30.17)∗∗∗ (1.65)

Dummy variable for 256K 0.5406 0.3627 5.6540 0.2940
(5.15)∗∗∗ (3.73)∗∗∗ (44.67)∗∗∗ (2.97)∗∗

Dummy variable for 1MB 0.9161 0.6457 7.6786 0.5414
(8.65)∗∗∗ (6.45)∗∗∗ (53.48)∗∗∗ (5.30)∗∗∗

Dummy variable for 4MB 0.9177 0.6686 9.6323 0.5725
(8.88)∗∗∗ (6.86)∗∗∗ (56.75)∗∗∗ (5.76)∗∗∗

Dummy variable for 16MB 1.1400 0.7991 11.2193 0.6677
(10.65)∗∗∗ (7.74)∗∗∗ (60.36)∗∗∗ (6.32)∗∗∗

Dummy variable for 64MB 0.8624 0.4687 12.7763 0.3169
(7.20)∗∗∗ (4.04)∗∗∗ (60.80)∗∗∗ (2.67)∗∗

Dummy variable for 128MB 0.7302 0.2861 13.9123 0.1149
(5.59)∗∗∗ (2.25)∗ (61.19)∗∗∗ (0.88)

Dummy variable for 256MB 0.9084 0.4122 14.9150 0.2208
(6.50)∗∗∗ (3.02)∗∗ (61.72)∗∗∗ (1.58)

Dummy variable for 256MB 0.9084 0.4122 14.9150 0.2208
(6.50)∗∗∗ (3.02)∗∗ (61.72)∗∗∗ (1.58)

Dummy variable for 1GB 0.0845 -0.1255 17.4191 -0.2065
(0.36) (0.59) (49.07)∗∗∗ (-0.95)

Number of observations 488 488 488 488
R-squared adjusted 0.86 0.89 0.96 0.88

Table A presents learning effects for the DRAM industry. The dependent variable is average selling price.

In column 1, the explanatory variable are a constant and cumulated past output. In columns 2 and 4, the

explanatory variable are a constant, the cumulated past output and contemporaneous output. In the reduced

form equation (column 3), the dependent variable is the average industry output. Explanatory variables are a

general demand shifter, and a time trend. All specifications are estimated in logarithms and with product-specific

dummy variables. Absolute values of t-statistics are shown in parentheses below the parameter estimates. ∗∗∗

(∗∗, ∗) denotes a 99% (95%, 90%) level of significance.
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Table 6: Estimation results for the demand function
Ordinary least squares Two-stage least squares

First stage Second stage

Variable (1) (2) (3) (4)
Constant 15.6122 -5.7424 -11.6827 17.3926

(19.49)∗∗∗ (-4.09)∗∗∗ (-6.29)∗∗∗ (18.54)∗∗∗

Log(Average selling price) -3.0359 -3.4870
(19.80)∗∗∗ (18.96)∗∗∗

Log(Price index 1.5320 1.8492
of substitute DRAM generations) (6.70)∗∗∗ (5.58)∗∗∗

Log(Number of firms) 0.0531 0.0529
(0.42) (0.50)

Log(Number of firms 0.2350 -0.2459
in substitute DRAM generations) (1.25) (1.18)

Log(Cumulative industry output) -0.3340 -0.0787
(10.75)∗∗∗ (2.88)∗∗

Log(Cumulated industry output 0.1840 0.0253
in substitute DRAM generations) (3.88)∗∗∗ (0.55)

Log(Price of silicon) 1.0334 1.5406
(6.29)∗∗∗ (7.41)∗∗∗

Log(Average SRAM selling price) 0.1214 0.1716 0.2882 0.0376
(0.95) (4.36)∗∗∗ (5.96)∗∗∗ (0.25)

First difference of Log(GDP) 28.4178 7.4937 6.0783 30.8773
(2.12)∗ (1.72) (1.14) (2.04)∗

Time trend -0.0650 -0.0066 -0.0346 -0.0816
(3.59)∗∗∗ (1.19) (5.74)∗∗∗ (3.98)∗∗∗

Dummy variable for 16K 2.7912 -0.0006 -0.1691 2.9007
(8.05)∗∗∗ (0.00) (1.13) (6.26)∗∗∗

Dummy variable for 64K 5.5337 0.1573 -0.8989 6.5387
(10.97)∗∗∗ (0.88) (5.10)∗∗∗ (10.58)∗∗∗

Dummy variable for 256K 9.6048 0.5597 -1.4110 11.1869
(14.83)∗∗∗ (2.03)∗ (5.97)∗∗∗ (13.36)∗∗∗

Dummy variable for 1MB 13.6247 0.9714 -2.0703 15.9609
(15.82)∗∗∗ (2.95)∗∗ (6.15)∗∗∗ (13.73)∗∗∗

Dummy variable for 4MB 16.8203 1.3763 -2.5274 19.7769
(15.01)∗∗∗ (3.49)∗∗∗ (6.48)∗∗∗ (13.41)∗∗∗

Dummy variable for 16MB 19.7173 1.7459 -3.1330 23.2995
(14.61)∗∗∗ (3.92)∗∗∗ (6.57)∗∗∗ (13.02)∗∗∗

Dummy variable for 64MB 21.7587 1.6960 -3.7892 25.8033
(14.12)∗∗∗ (3.55)∗∗∗ (7.82)∗∗∗ (12.59)∗∗∗

Dummy variable for 128MB 23.5801 1.8698 -4.4855 28.0229
(15.12)∗∗∗ (3.86)∗∗∗ (9.12)∗∗∗ (12.98)∗∗∗

Dummy variable for 256MB 25.7931 2.0193 -4.6228 30.1895
(15.86)∗∗∗ (4.29)∗∗∗ (9.55)∗∗∗ (13.37)∗∗∗

Dummy variable for 512MB 26.9809 1.9876 -5.2215 32.1104
(14.77)∗∗∗ (3.51)∗∗∗ (9.08)∗∗∗ (12.74)∗∗∗

Dummy variable for 1GB 25.0113 2.5328 -4.7983 31.3587
(12.55)∗∗∗ (3.82)∗∗∗ (7.30)∗∗∗ (12.26)∗∗∗

Number of observations 424 417 417 417
R-squared adjusted 0.83 0.93 0.98 0.81
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Table A presents ordinary least squares and two-stage least squares estimation results for the demand equation.

In the demand equation (columns 1 and 4), the dependent variable is industry output. Explanatory variables

are the average selling price, a price index of substitute DRAM generations, average SRAM selling price, a

general demand shifter, and a time trend. In the reduced form supply equations (columns 2 and 4), the depen-

dent variables are the average selling price and a price index for substitute DRAM generations. Explanatory

variables are the number of firms, number of firms in substitute DRAM generations, cumulated industry out-

put, cumulated industry output in substitute DRAM generations, and price of silicon. All specifications are

estimated in logarithms and with product-specific dummy variables. Absolute values of heteroscedasticity and

autocorrelation robust t-statistics are shown in parentheses below the parameter estimates. ∗∗∗ (∗∗, ∗) denotes

a 99% (95%, 90%) level of significance.
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Table 7: Estimation results for incumbents’ output policy function

OLS-FE IV-FE IV-FE II IV-FD
Variable (1) (2) (3) (4)
Constant 792.1619 575.9142 373.5527 -0.1673

(80.42)∗∗∗ (1.90) (5.03)∗∗∗ (9.41)∗∗∗

Demand shock 0.0353 0.0485 0.0329 -0.0145
(4.59)∗∗∗ (4.59)∗∗∗ (2.69)∗∗ (0.84)

Log(Price of silicon) -0.3929 -0.3902 -0.3578 -0.2878
(6.58)∗∗∗ (4.84)∗∗∗ (3.77)∗∗∗ (2.25)∗∗

Log(Lagged number of firms) 0.3432 0.6564 0.4347 0.3242
(8.00)∗∗∗ (6.94)∗∗∗ (3.70)∗∗∗ (3.01)∗∗

Log(Cumulated past output) 0.8451 1.1448 0.4701 0.1905
(54.54)∗∗∗ (28.29)∗∗∗ (3.83)∗∗∗ (2.12)∗∗

Log(Cumulated past output of other firms) 0.0336 -0.1765 -0.1546 0.6395
(2.51)∗∗ (4.92)∗∗∗ (2.70)∗∗

Time trend -0.1512 -0.0692 0.6788 -0.1452
(57.67)∗∗∗ (4.32)∗∗∗ (4.39)∗∗∗ (7.89)∗∗∗

AR(1) 0.8699 0.7926 0.0439
(42.96)∗∗∗ (27.42)∗∗∗ (1.19)

Lagged output 0.5989
(6.87)∗∗∗

Dummy variable for 64K 3.1258 1.8804 0.8547 0.0093
(62.47)∗∗∗ (34.28)∗∗∗ (4.79)∗∗∗ (0.27)

Dummy variable for 256K 4.8971 3.5872 1.6698 0.0159
(69.74)∗∗∗ (49.17)∗∗∗ (5.22)∗∗∗ (0.79)

Dummy variable for 1MB 6.8288 5.4853 2.4519 0.0394
(79.27)∗∗∗ (59.53)∗∗∗ (5.14)∗∗∗ (1.66)∗

Dummy variable for 4MB 8.5079 7.2406 3.1786 0.0425
(86.53)∗∗∗ (59.35)∗∗∗ (5.04)∗∗∗ (1.67)∗

Dummy variable for 16MB 9.9598 8.9356 3.8632 0.0493
(83.22)∗∗∗ (62.83)∗∗∗ (5.03)∗∗∗ (1.61)

Dummy variable for 64MB 11.2759 10.5943 4.6017 -0.0124
(91.63)∗∗∗ (70.76)∗∗∗ (5.08)∗∗∗ (0.42)

Dummy variable for 128MB 11.7451 11.2063 4.9174 -0.0875
(86.74)∗∗∗ (65.27)∗∗∗ (5.05)∗∗∗ (1.83)∗

Dummy variable for 256MB 13.2375 12.7171 5.6182 0.0230
(100.89)∗∗∗ (83.23)∗∗∗ (5.23)∗∗∗ (0.47)

Dummy variable for 512MB 14.9492 14.6396 6.5041 0.0751
(76.05)∗∗∗ (66.85)∗∗∗ (5.23)∗∗∗ (0.46)

Dummy variable for 1GB 14.9185 14.8611 6.4012 0.1000
(60.07)∗∗∗ (53.59)∗∗∗ (4.99)∗∗∗ (0.63)

Number of observations 5,051 3,857 4,031 3,669
R-squared adjusted 0.93 0.91 0.90 0.18
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Table A presents estimation results for the incumbents’ policy function. The dependent variable is firm-specific

output. Explanatory variables are the demand shock, price of silicon, lagged number of firms in the market, firm-

specific past cumulated output, cumulated past output of all other firms, and a time trend. All specifications

are estimated in logarithms and with product-specific and firm-specific dummy variables. The specification

in column (1) is estimated with ordinary least squares, columns (2) and (3) with instrumental variables, and

column (4) in first differences. In columns (2) to (4), we instrument cumulated past output with cumulated

past output in the previous product generation.Absolute values of heteroscedasticity and autocorrelation robust

t-statistics are shown in parentheses below the parameter estimates. ∗∗∗ (∗∗, ∗) denotes a 99% (95%, 90%) level

of significance. The first stage results are available from the authors upon request.
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Table 8: Estimation results for first stage of incumbents’ output policy function
IV-FE IV-FE II IV-FD

Variable (1) (2) (3)
Constant -13.5490 -485.1445 0.0163

(7.51)∗∗∗ (34.08)∗∗∗ (2.98)∗∗

Log(Cumulated past output 0.3333 0.1366 0.3905
in previous generation) (14.37)∗∗∗ (8.86)∗∗∗ (9.63)∗∗∗

Log(lagged cumulated past output) 0.1488
(2.68)∗∗

Demand shock -0.0126 -0.0234 -0.0067
(0.77) (2.15)∗∗ (1.08)

Log(Price of silicon) -0.1433 0.2100 0.0250
(1.52) (3.40)∗∗∗ (1.13)

Log(Lagged number of firms) -0.1384 -0.5003 0.0313
(0.93) (6.10)∗∗∗ (0.61)

Log(Cumulated past output of other firms) 0.6869 0.2779 0.3896
(30.38)∗∗∗ (15.33)∗∗∗ (10.09)∗∗∗

AR(1) -0.0880 0.2395
(3.72)∗∗∗ (5.16)∗∗∗

Lagged output 0.6089
(33.35)∗∗∗

Dummy variable for 64K -1.4270 -1.5538 0.0365
(15.22)∗∗∗ (28.53)∗∗∗ (4.02)∗∗∗

Dummy variable for 256K -1.9919 -2.6946 0.0088
(18.33)∗∗∗ (36.69)∗∗∗ (1.67)

Dummy variable for 1MB -2.6434 -3.9979 0.0056
(17.65)∗∗∗ (40.44)∗∗∗ (1.01)

Dummy variable for 4MB -3.2277 -5.1547 0.0190
(18.25)∗∗∗ (42.38)∗∗∗ (2.31)∗

Dummy variable for 16MB -3.6488 -6.2432 0.0033
(18.20)∗∗∗ (43.18)∗∗∗ (0.46)

Dummy variable for 64MB -4.1629 -7.4043 -0.0041
(17.86)∗∗∗ (44.82)∗∗∗ (0.56)

Dummy variable for 128MB -4.3254 -7.8776 -0.0071
(16.77)∗∗∗ (42.08)∗∗∗ (0.34)

Dummy variable for 256MB -4.1750 -8.6265 -0.0029
(15.73)∗∗∗ (42.52)∗∗∗ (0.24)

Dummy variable for 512MB -4.8786 -9.9434 0.0092
(14.41)∗∗∗ (39.14)∗∗∗ (0.28)

Dummy variable for 1GB -4.4377 -9.8920 -0.0169
(10.46)∗∗∗ (37.39)∗∗∗ (0.19)

Number of observations 3,857 4,031 3,669
R-squared adjusted 0.87 0.95 0.78

Table A presents the estimation results for the first stage of the incumbents’ policy function. The dependent

variable is firm-specific past cumulated output. Explanatory variables are the past cumulated output in the

previous generation, demand shock, price of silicon, lagged number of firms in the market, firm-specific past

cumulated output, cumulated past output of all other firms, and a time trend. All specifications are estimated in

logarithms and with product-specific and firm-specific dummy variables. Absolute values of heteroscedasticity

and autocorrelation robust t-statistics are shown in parentheses below the parameter estimates. ∗∗∗ (∗∗, ∗)

denotes a 99% (95%, 90%) level of significance.
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Table 9: Estimation results for entry and exit distribution

Entry Exit Exit Exit

Variable (1) (2) (3) (4)
Constant -396.6066 -551.3873 -507.7130 -524.0555

(7.43)∗∗∗ (9.96)∗∗∗ (9.38)∗∗∗ (9.30)∗∗∗

Unobserved productivity (IV-FE I) -0.1532
(5.65)∗∗∗

Unobserved productivity (IV-FE II) -0.1647
(5.81)∗∗∗

Unobserved productivity (IV-FD) -0.1903
(2.60)∗∗

Demand shock -0.0699 -0.0269 -0.0135 -0.0243
(1.67) (0.53) (0.27) (0.47)

Log(Cumulated past output) -0.2728 -0.1591 -0.2683
(5.70)∗∗∗ (3.35)∗∗∗ (5.24)∗∗∗

Log(Cumulated past output of other firms) 0.1903 0.2184 0.2903
(2.43)∗ (2.87)∗∗ (3.23)∗∗

Log(Price of silicon) 0.3307 0.3137 0.3044 0.2669
(1.39) (1.40) (1.37) (1.17)

Log(Number of firms) 0.4574 0.0859 0.1414 -0.0708
(4.50)∗∗∗ (0.46) (0.76) (0.37)

Dummy variable for 64K -1.2539 -2.1075 -1.9352 -2.0477
(4.79)∗∗∗ (8.32)∗∗∗ (7.78)∗∗∗ (8.09)∗∗∗

Dummy variable for 256K -1.8893 -4.0028 -3.7000 -3.6072
(5.89)∗∗∗ (10.13)∗∗∗ (9.65)∗∗∗ (9.46)∗∗∗

Dummy variable for 1MB -2.5216 -4.9318 -4.4344 -4.5532
(6.50)∗∗∗ (9.92)∗∗∗ (9.19)∗∗∗ (9.33)∗∗∗

Dummy variable for 4MB -3.3885 -5.4639 -4.8210 -5.0011
(6.98)∗∗∗ (9.97)∗∗∗ (9.04)∗∗∗ (9.29)∗∗∗

Dummy variable for 16MB -3.9182 -5.9904 -5.1391 -5.3870
(7.12)∗∗∗ (9.86)∗∗∗ (8.74)∗∗∗ (9.07)∗∗∗

Dummy variable for 64MB -4.2407 -6.1441 -5.1236 -5.4298
(6.68)∗∗∗ (9.66)∗∗∗ (8.35)∗∗∗ (8.72)∗∗∗

Dummy variable for 128MB -4.1343 -6.6994 -5.6035 -5.8728
(5.96)∗∗∗ (9.68)∗∗∗ (8.43)∗∗∗ (8.67)∗∗∗

Dummy variable for 256MB -4.2562 -6.6247 -5.3688 -5.8503
(5.77)∗∗∗ (9.59)∗∗∗ (8.07)∗∗∗ (8.62)∗∗∗

Dummy variable for 512MB -5.1172 -6.0430 -4.7532 -4.6977
(5.78)∗∗∗ (7.07)∗∗∗ (5.80)∗∗∗ (5.39)∗∗∗

Dummy variable for 1GB -4.0845 -5.1972 -4.2237
(4.33)∗∗∗ (4.74)∗∗∗ (4.20)∗∗∗

Number of observations 2,526 4,808 5,020 4,576
Pseudo R-squared 0.23 0.28 0.28 0.27
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Table A presents the estimation results from the probit models of the entry and exit distribution. In the entry

model (column 1), the dependent variable is an indicator variable, which is equal to one when a firm enters the

market and zero before. Explanatory variables are the demand shock, price of silicon, number of firms, and a

time trend. In the exit models (columns 2 to 4), the dependent variable is an indicator variable, which is equal

to one when a firm exits the market and zero before. Explanatory variables are the demand shock, productivity

shock (from the estimation of incumbents’ policy function), price of silicon, number of firms, cumulated past

output, and cumulated past output of other firms. All specifications are estimated in logarithms and with

firm-specific and product-specific dummy variables. Absolute values of t-statistics are shown in parentheses

below the parameter estimates. ∗∗∗ (∗∗, ∗) denotes a 99% (95%, 90%) level of significance.
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Table 10: Estimation results for the structural parameters

Variable (1) (2)

Constant θ0 4.699499

(7.06)∗∗∗

Economies of scale θ1 -1.031769

(215.52)∗∗∗

Learning effects θ3 -0.0049591

(2.83)∗∗∗

Spillovers θ4 -.0004025

(2.66)∗∗∗

Number of observations 304

Table A presents the structural parameters in the (marginal) cost function. Absolute values of t-statistics are

shown in parentheses below the parameter estimates. ∗∗∗ (∗∗, ∗) denotes a 99% (95%, 90%) level of significance.
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Table 11: Ranking of firms’ unobserved productivity by generation

Firms HQ 16K 64K 256K 1Mb 4Mb 16Mb 64Mb 128MB
Adv. Micro Dev. US 6, 2 9, 9 16,. . . . . .
Alliance US . . . . 17,. 25, 11 . .
Elite CH . . . . 20,. 18, 22 21, 2 14, 2
Elpida JAP . . . . . 26 15, 11 6, 10
Etron TAIW . . . . 26,. 28, 1 16, 20 11, 13
Fairchild US 14, 1 20, 12 . . . . . .
Fujitsu JAP 4, 3 5, 2 4, 1 5, 14 11, 10 13, 9 14, 14 20, 14
Hitachi JAP 6, 11 3, 8 3, 9 ., 12 2, 7 9, 7 12, 22 19,.
Hynix SK . . . . 27, . 4, 23 2, 1 3, 3
Hyundai SK . 18,. 11, 11 10, 16 4,. 3, 5 5, 7 16
IBM US . . . 20,. 13, 3 17, 12 19, 16 .
Inmos US . 12,. 21,. . . . . .
Integr Circuit Sol US . . . . 24,. 21, 20 20, 4 12, 5
Integr Silicon Sol US . . . . 23,. 22, 16 18, 5 13,.
Intel US 10,. 13, 3 18, 14 19, 17 . . . .
LG SK . . 17,. 15, 18 9, 1 8, 8 17, 9 .
Matsushita JAP 16,. 9, 10 12, 12 17, 4 15, 16 20, 2 27,. .
Micron US . 8,. 8, 2 9, 5 6, 14 2, 14 1, 12 1, 6
Mitsubishi JAP 15,. 4, 7 5, 4 3, 12 10, 9 12, 14 11, 18 17,.
Mosel Vitelic US . 19,. 16, 5 16, 13 14, 18 24, 17 8,. 7, 7
Mostek US 1, 8 x 22,. . . . . .
Motorola . . x 15,. 11, 1 18, 5 23, 19 28,. .
Nan Ya Techn. US . . . . . 14,. 9, 21 8,.
Ntl. Semic. US 5, 4 15, 6 23,. . . . . .
NEC JAP 2, 6 1, 1 1, 8 6, 9 3, 11 5, 10 6, 10 15,.
Nippon JAP . . 10,. 14, 3 16, 8 27, 21 25,. .
OKI JAP . 7,. 7, 6 7, 2 5, 2 6, 15 23, 15 .
Samsung SK . 6,. 6, 13 2, 8 1, 4 1, 6 3, 8 2, 8
Sanyo JAP . . 20,. 13, 6 21, 13 . . .
SGS-Thompson EU 17, 7 . . . . . . .
Sharp JAP . 14,. 13,. 18, 15 25, 15 . . .
Siemens EU 11,. 11, 4 14, 10 8, 10 12, 12 7, 3 4, 3 4, 9
STC US 8, 5 17, 5 . . . . . .
Texas Instr. US 3, 9 2,. 2, 7 4, 7 7, 17 15, 18 26, 6 .
TM Tech US . . . . . ., 24 ., 13 ., 1
Toshiba JAP 12,. 10, 11 9, 3 1, 11 8, 6 11, 13 10, 19 5, 11
Vanguard US . . . . 19,. 10,. 13 23 10, 12
Winbond CH . . . . . 16,. 7, 17 9, 4

Table A shows the ranking in shipments and the ranking in the calculated firm-level unobserved productivity,
respectively, for the different DRAM generations.
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B Appendix: Figures

Figure 1: Industry units shipped, 1974-2004
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Figure 2: Cumulated industry units shipped, 1974-2004
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Figure 3: Average DRAM selling prices in USD, 1974-2004
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Figure 4: Number of firms in the DRAM market, 1974-2004
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Figure 5: Number of firms in different DRAM markets, 1974-2004
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