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Abstract. This paper analyzes a situation where market designers
create new trading platforms and traders learn to select among them. We ask
whether “Walrasian” platforms, leading to market - clearing trading outcomes,
will dominate the market in the long run. If several market designers are com-
peting, we find that traders will learn to select non-market clearing platforms
with prices systematically above the market-clearing level, provided at least one
such platform is introduced by a market designer. This in turn leads all mar-
ket designers to introduce such non-market clearing platforms. Hence platform
competition induces non-competitive market outcomes.
Keywords: Market Institutions, Evolution of Trading Platforms, Learning,

Asymmetric Rationality.
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1. Introduction
Markets are not only characterized by demand and supply, but also by the rules that
govern the trading process. The “institutional” framework determines the set of mar-
ket participants, their available options, and the matching and information structure
of the market. In reality we observe a huge variety of different market frameworks
even for trading the very same good. Real estate, for example, is traded at auc-
tions as well as by personal bargaining. There is also a large amount of evidence
(mainly experimental) that these characteristics are crucial for the resulting trading
outcome and for the realized prices (for an overview see e.g. Plott [28] or Holt [20]).
While double auctions typically tend to generate market clearing prices and quanti-
ties, posted offer markets establish prices that tend to be above the market clearing
level, whereas the prices on posted bid markets seem to be below the Walrasian level
(see e.g. Plott and Smith[29]). As a consequence, some gains of trade are not realized
on these trading platforms, and inefficiencies occur due to the design of the trading
platform.
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Since the institutional framework of a market matters, it is important to analyze
how market institutions evolve and what properties the emerging trading platforms
have. In particular, one might investigate the circumstances under which market
institutions emerge that enforce market clearing outcomes. In order to answer this
question, it is useful to distinguish between two aspects of the evolution of market
institutions, namely the emergence of new institutions and the selection between
existing institutions. New market institutions can either be introduced on purpose
by a market designer, or be the (unintended) by-product of the actions of the traders.
In what follows we will focus on market platforms introduced on purpose.1 If a
trading platform is introduced by a (profit maximizing) market designer who demands
user fees, the emergence of new platforms and the selection among existing ones are
closely interlinked. The market designer will try to introduce a new platform with
characteristics that attract many traders. This attractiveness in turn determines the
long run survival of the platform. In this paper we analyze this interplay between the
creation of new and the selection among existing trading platforms, and we investigate
the characteristics of the resulting platforms with respect to their ability to achieve
market clearing outcomes.
A good example for what we have in mind are Business to Business (B2B) trading

platforms (for an analysis of B2B e-commerce see Lucking-Reiley and Spulber [26]).
The last decade has seen a proliferation of B2B platforms, and despite the burst of
the internet bubble there were more than 1000 B2B marketplaces active in Europe
in 2003 (see European Commission [15]). While most of the attention is devoted
to e-marketplaces targeting consumers (like e-bay or Yahoo), about 95% of the e-
commerce is actually B2B (see United Nations [35]). In 2004 B2B had an estimated
volume of $1 trillion (see The Economist [9]). Contrary to Business to Consumers or
Consumer to Consumer platforms, large quantities of relatively standardized products
are traded at B2B exchanges. On these platforms agents seem to act either as buyers
or as sellers, but not as both (see European Commission [15]). A large part of B2B
e-commerce is done via platforms operated by buyers or sellers themselves. In these
cases the trading platforms can be viewed as a cost-reducing way of organizing the
bargaining and purchasing process. The situation is different, if the trading platform
is operated by a third, independent party. Such platforms are run by market designers
who receive trading fees from users. The size of this part of the B2B e-commerce is
large, too. Of all firms active on B2B platforms, about one third operates on such
neutral platforms (see European Commission [15]).
In this paper, we develop a framework to analyze the interplay between the design

of such trading platforms and their selection by traders. The platforms are created
by profit maximizing and risk-neutral market designers. The designers compete with
each other through platform designs. In particular, we allow that each designer
demands a trading fee, but also that the platform is designed with a systematic
price-bias, above or below the market clearing price. Hence, the designer decides

1For an analysis of markets as a by-product of traders’ actions, see Kirchsteiger et al.[24].
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upon the share of the surplus created through trade at the platform but can also
favor one type of trader with the introduction of a price bias. This model of market
designs captures crucial features of trading platforms, and highlights the following
trade-off for the designer. Any bias reduces the surplus generated at the platform
(and thereby ceteris paribus the revenue for the designer), but may also make it more
attractive for the favored type of trader, which in turn may enhance the platform’s
survival probability.
To analyze this trade-off, we model competition between two market designers and

compare the results of this setting with the benchmark case of a monopolistic market
designer. After the platforms have been designed, each trader decides on which
platform to be active (for the monopolistic case, there is of course no real choice -
traders just trade at the only existing platform). The role of the trader (buyer or
seller) is exogenously given. Sellers are assumed to be firms with a constant returns
to scale production technology2. Buyers are characterized by their demand functions,
and might be either consumers or other firms. For given platform characteristics,
the selection by traders gives rise to a coordination game. If each trader opts for
a particular platform and gains from trade are strictly positive, no trader has an
incentive to deviate from this platform - independently of the design alternatives
offered by competing platforms. However, traders might learn to coordinate on a
particular platform. Following the game-theoretic learning literature (see Young [36],
Kandori et al. [22], or Ellison [11]), we use a Markovian model to analyze the platform
choice of the traders. We assume that the traders’ behavior depends on the market
outcomes generated by the different platforms and thereby on the characteristics of
all feasible platforms. We are interested in the long term properties of this learning
process, i.e. in its limit invariant distribution. This limit invariant distribution in turn
determines the payoffs of the market designers. Hence, we establish a link between
designer-revenues and the characteristics of all feasible platforms.
For the case of competing platforms we find that - in the long run - traders will

always coordinate on a platform with prices above the market clearing level, provided
that such a platform has been introduced by at least one designer. This forces both
designers to introduce platforms that are not market clearing, but that have a price
bias in favor of the sellers. On the other hand we find that a monopolistic designer will
always introduce a market clearing platform. Therefore competition at the designers’
level turns out to be detrimental for a competitive outcome at the traders’ level. We
regard this result as paradoxical.
The present paper is related to three strands of the literature. First, since we in-

vestigate the role of trading platforms with exogenously given buyers and sellers, our
paper is to some extent related to the two-sided markets literature (see Rochet and
Tirole [31] for an overview). This literature is based on the assumption of network-
externalities. It analyzes the impact of these externalities and of platform competition

2In Appendix B we investigate the robustness of our results with respect to decreasing returns
to scale production.
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on the structure of the fees demanded by the market designers (see e.g. Armstrong
[3], Belleflamme and Toulemonde [4], Caillaud and Julien [8], or Rochet and Tirole
[30]). In contrast, we want to investigate whether traders learn to coordinate on mar-
ket clearing trading platforms, if such platforms are feasible. Therefore we explicitly
model the learning behavior of the traders, whereas the two-sided market literature
assumes rational traders. Further, we ask whether platform competition induces mar-
ket designers to establish platforms with characteristics that achieve market clearing
outcomes. Consequently, we abstract from any network externalities that are not
internalized by the price at which trade takes place. In our model trading fees de-
manded by the market designers are neutral insofar as the market outcome is only
influenced by the total fee imposed on both market sides, but not on the distribution
of the fees on the two market sides.3

Second, our paper is also related to the literature on competition between ex-
ogenously given trading institutions. Ellison and Fudenberg [13] and Ellison et al.
[14] analyze under which circumstances different market institutions can coexist in
equilibrium. Due to their different research questions these papers do not allow for
institutions with systematic price biases. Kugler et al. [25] and Neeman and Vulkan
[27] investigate the case of centralized versus decentralized trading institutions. All
of these papers they rely on the assumption of rational traders, and do not allow for
learning. In terms of traders’ behavior, the learning model of Gerber and Bettzüge
[19] is relatively close to our paper. But since they focus in the possibility of multiplic-
ity of active trading platforms, they consider neither non-market-clearing platforms
nor market designers. Closest related to the paper at hand is the work by Alós-Ferrer
and Kirchsteiger [2], which also analyzes the learning behavior of traders who face
the choice between different, not necessarily market clearing platforms. That paper,
however, deals only with the selection among different, exogenously given institutions
and does not consider competition between market designers.
In our model rational market designers are confronted with learning traders.4

Hence, our paper belongs to a small but growing literature that we would like to call
“asymmetric rationality,” where fully rational firms or otherwise sophisticated agents
are confronted with a population of boundedly rational ones. The basic motivation
is that consumers and small traders do not have the resources to obtain all the
relevant information and fully optimize their behavior, often relying on behavioral
rules of thumb instead. However, large firms, market designers, etc. can be taken as
comparatively sophisticated. Gabaix and Laibson [18], Hopkins [21], and Spiegler [34]
apply this approach to the analysis of industries facing boundedly rational consumers.
See Ellison [12] for an overview of this literature.
The paper is organized as follows. Section 2 presents the basic model. Section 3

discusses the traders’ platform choice of the traders. Section 4 analyzes the design

3Rochet and Tirole [31] define two-sided markets by the non-neutrality of the fees. In their
terminology we model a one-sided market.

4In Appendix B we show the robustness of our results with respect to learning designers.
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of the platform. Section 5 concludes. Some proofs are relegated to Appendix A.
In Appendix B we analyze the robustness of our results with respect to boundedly
rational designers and with respect to decreasing returns to scale production.

2. The model
2.1. Market platforms’ design. A homogenous good is traded at alternative
market platforms, which are set up by market designers. For simplicity, we restrict
our attention to two competing market designers (referred to as competitive market
design). As a benchmark, we will also analyze the case where only one market designer
can set up a trading platform (referred to as monopolistic market design).
Before any trade takes place, the market designers decide upon the set of trading

rules under which their respective platforms operate, and the trading fees they de-
mand from the traders. We do not aim at a complete description of the different sets
of rules the designers can introduce. Rather, we characterize them by their ability
to establish market clearing. Market designers may choose to design platforms such
that market clearing is guaranteed, or they may pick platforms where the price is
systematically biased above or below the market clearing price. Denote by p∗i the
market clearing price if at least one seller and at least one buyer choose this platform
and by βi > 0 the bias of platform i = 1, 2. The actual price at which trade takes
place at platform i is then given by pi = βip

∗
i . If platform i is not market clearing

(i.e. βi 6= 1) the quantity traded is determined by the short market side, and traders
on the long market side are rationed. Sellers are rationed equally if βi > 1. We do
not specify any rationing rule for the buyers.
The common set of feasible biases is assumed to be a finite, regular grid B =

{βmin, βmin + δ, ..., 1, ...βmax − δ, βmax}, where 0 < βmin < 1 < βmax and δ is the step
of the grid. We assume explicitly that 1 ∈ B, and refer to the feasible platform with
β = 1 as the market-clearing platform. |B| denotes the number of feasible biases.
After the platforms are set up, traders will use their experience and observations

to eventually learn which platform to use. Formally, we will analyze a learning process
with an infinite number of trading rounds. The designers’ long-run payoffs are the
expected per round charges. Furthermore, we assume that the charges of designer i
depend on the revenue generated by trade on i0s platform.5 Denote by fi the trading
fee demanded by designer i, and by ERi the expected per round revenue generated
on platform i. Then market designer i’s profits are given by πD,i = fiERi. The
set of feasible fees is the same for both designers. Again for simplicity we assume
that it is given by a finite, regular grid F = {fmin, fmin + γ, ...fmax − γ, fmax}, where
0 < fmin < fmax < 1.6 |F | denotes the number of feasible fees.
The trading fee can be imposed on the sellers’ side, on the buyers’ side, or divided

between both sides. However, the market clearing price, the realized price at which

5Our results would not change if we assume quantity-dependent charges instead of revenue-
dependent charges. The same holds for fixed participation fees.

6The assumption that the fees are strictly positive can be justified by (unmodelled) setup costs
for the market designers.
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trade is conducted, and the traded quantities depend only on the total fee, and not
on the distribution of the fee over the two market sides. Buyers at platform i pay pi
for each unit, market designers receive fipi, and sellers ultimately receive (1− fi) pi.
Hence, we do not need to specify on which market side the fee is imposed.
The characteristics of a platform i are denoted by si = (βi, fi), and the set of

feasible characteristics by S = B × F.

2.2. Traders. The good is supplied by a finite set M of profit maximizing firms
that use a constant returns to scale technology. We assume that there are at least
two sellers at the market, i.e. |M | > 1. Each seller uses the same constant returns
to scale technology with marginal costs of c > 0.7 When deciding about the supply,
a seller takes into account the trading fee of the platform at which he is operating.
Hence, sellers will supply a strictly positive but finite quantity if and only if the price
net of trading fee is equal to c.
As we will see, the assumption of a constant returns to scale technology allows us

to derive results for a very general class of learning models. That is, by focusing on
the constant returns to scale case, we will obtain results that are robust to the details
of the learning process. In the appendix we illustrate that for strictly decreasing
returns to scale the results depend on the details of the learning model. In particular,
the results of the constant returns to scale case can be replicated also for strictly
decreasing returns to scale, but not for the whole class of learning models we analyze
here.
The good is demanded by a finite setN of buyers with |N | > 1. Each buyer n ∈ N

is endowed with a demand function dn(p) which might be different for different buyers.
All the demand functions are assumed to be strictly decreasing in p. Furthermore,
0 < dn(p) <∞ for all p, n. To avoid discontinuities in the designers’ profit functions
we also assume that limp→∞ pdn(p) = 0 for all n ∈ N.8
We call a platform active if both sellers and buyers are present and positive

quantities are traded, and inactive if not. The presence of both types of traders does
not ensure that the platform is active. Due to the assumption of a constant returns
to scale technology the market clearing price of a platform i where both sellers and
buyers are present (and, in particular, of an active platform) is given by p∗i (si) =

c
1−fi .

The realized price at which trade is conducted on platform i is then

pi(si) = βi
c

1− fi
.

Note that if βi < 1, the net price received by the sellers is below the marginal costs.
Hence, supply is zero, and platform i is inactive.

7The assumption of identical sellers might seem restrictive at the first sight. Within our frame-
work firms without access to the lowest cost technology cannot sell anything on the market, anyhow.
Hence, our assumptions only rule out the case where exactly one firm has access to the production
technology with the lowest costs.

8Our results do not depend on the assumption that the value of demand goes to zero when the
price approaches infinity. However, the presentation is simplified by this assumption.
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Denote by Ni the set of buyers who choose platform i, and byMi the set of sellers
who choose platform i. Then, platform i is active if and only if |Ni| > 0, |Mi| > 0,
and βi ≥ 1. Let

DNi(p) =
X
n∈Ni

dn (p)

denote the total demand at platform i. The quantities traded by a buyer n ∈ Ni,
qn,i(Ni,Mi, si), and by a seller m ∈Mi, qm,i(Ni,Mi, si), are given by

qn,i(Ni,Mi, si) =

½
dn(βi

c
1−fi ) if i is active,
0 otherwise,

qm,i(Ni,Mi, si) =

(
1
|Mi|DNi

³
βi

c
1−fi

´
if i is active,

0 otherwise.

In the single-designer case, traders cannot choose between different platforms, but
have to use platform i. Hence, Ni = N, Mi = M, and the market outcome is only
determined by the platform characteristics si.
If there is competition between market designers, trade can take place at different

platforms, and the outcome depends also on the way traders learn which platform
to use. This learning process is driven by the market outcomes of both platforms
(see above), and by the individual evaluations of these outcomes. For the latter
part note that if buyers trade strictly positive amounts, they are strictly better off
than without trade. Hence, inactive platforms are worse for buyers than active ones.
Furthermore, whenever a buyer trades a strictly positive quantity, he is not rationed
at all. Hence, it is natural to assume that buyers’ evaluation of active platforms is
monotonically decreasing in the price. Therefore, buyers’ evaluation of platform i
could be represented e.g. by9

πn,i(si) =

½
1
pi
= 1−fi

βic
if i is active,

0 otherwise

Hence, πn,i(si) > 0 for any active platform i. If both platforms are active (i.e. positive
amounts are traded),

p(si) < p(sj)⇐⇒ πn,i(si) > πn,j(sj).

Clearly, platform i is active if and only if both types of traders are present and
βi ≥ 1. Both platforms are active whenever Ni, Nj 6= N,Mi,Mj 6=M and βi,βj ≥ 1.
In particular, if βi = βj = 1 and fi < fj, then πn,i(si) > πn,j(sj).

9We do not use this particular representation. If demand is derived from utility maximization,
though, the realized (indirect) utility must be (a strictly monotone transformation of) this payoff
function.
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The sellers’ evaluation of the platforms are determined by the respective profits.
An inactive platform gives of course zero profits. Furthermore, whenever βi > 1,
sellers trading on platform i are on the long market side, and hence equally rationed.
Hence, the sellers’ evaluation of platform i is given by

πm,i(Ni,Mi, si) =

( h
1
|Mi|DNi

³
βi

c
1−fi

´i
(βi − 1)c if i is active,

0 otherwise.

Note that as long as both platforms are active, the outcome of a non-market
clearing platform is always better for the sellers than the outcome of a market clearing
platform. That is, for all fi, fj,

Ni, Nj 6= N, Mi,Mj 6=M and βi > βj = 1 ⇒ πm,i(Ni,Mi, si) > πm,j(Ni,Mi, si) .

3. The Traders’ Platform Choice
First, market designers choose the characteristics of their platforms. If there is only
one market designer, traders’ choice is trivial - they simply opt for the existing plat-
form. With more than one market designer, traders have to choose between the two
platforms. For any given si, sj the choice of platform constitutes a coordination game.
If all traders choose platform i, no trader has an incentive to deviate to the other
platform j. Furthermore, if βi and βj are strictly larger than 1, full coordination on
any platform is even a strict Nash equilibrium. Hence, nothing guarantees coordina-
tion on any particular platform, and therefore traders have to learn which platform
to use.

3.1. The Learning Process. In order to model the learning process, we (im-
plicitly) assume that a trader does not only take into account his own experiences
(as he would in e.g. a reinforcement learning model). He observes the prices and the
quantities of both platforms (including the observation of the inactiveness of a plat-
form), and takes this information into account. We also assume that an individual
trader does not have enough information on other traders or is not able to perform
all the necessary computations in order to predict the future behavior of the other
traders. Hence, an individual trader cannot accurately predict the future outcomes
of the platforms. Furthermore, traders also lack the capability necessary to always
compute an exact (but myopic) best reply to the current choices of all other traders.
What can a trader do in such a situation? From his individual, myopic standpoint,

if he considers himself to be small relative to market size, the best thing he can do
is to evaluate the outcomes of both platforms, and switch to the other platform if he
perceives the other platform’s outcome as better. A trader can perceive this behavior
as approximately rational, since when he switches, the implied changes in prices and
traded quantities will most of the time be small, and hence this behavior is close to
best reply. Of course, this could also be interpreted as imitation of successful traders
of the own market type. We want to stress, though, that the described behavior does
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not require the observation of any evaluation conducted by other traders, but merely
the observation of prices and traded quantities of both platforms.
We proceed now to model the learning process. The state space is given by

Ω = {1, 2}|N |×{1, 2}|M |. A typical state ω specifies which trading platform is chosen
by each buyer and each seller - trader k’s platform choice is denoted by ω(k) ∈ {1, 2}.
The following notation will prove convenient:

Ni (ω) = {n ∈ N |ω(n) = i}
Mi (ω) = {m ∈M |ω(m) = i}

i.e. Ni (ω) ⊆ N is the set of buyers who are on platform i in state ω, andMi (ω) ⊆M
the set of sellers who are on platform i in state ω. Of course, for j 6= i, Ni (ω) =
N \Nj (ω) and Mi (ω) =M \Mj (ω) .
The state of the process at time t = 0, 1, 2, ... is given by ω(t) ∈ Ω. That is,

ω(t)(k) ∈ {1, 2} denotes the platform chosen by trader k at time t.

Unperturbed Learning Process. We first concentrate on the unperturbed
learning process, where traders switch platform only because of learning, but not
because of experimentation (experimentation is introduced in section 3.1 below). If
an agent is able to revise his choice for a given period t+1, he takes the new market
outcomes of both platforms in period t and evaluates them. As explained above, we
postulate the following learning rule:

Assumption A: A trader, who gets the opportunity to revise, observes the out-
comes of both platforms in the last period. He then chooses the platform whose
outcome he evaluates as best. In case of indifference, he randomizes the choice,
with both platforms chosen with strictly positive probability. Choice probabil-
ities may depend on the outcomes but not on the platforms’ names.10

That is, provided that trader k receives revision opportunity at period t, he will
choose the platform with a period t − 1 outcome that he evaluates highest. If, by
chance, the outcomes of both platforms are equally evaluated, players are indifferent
and will select one platform at random. For instance, in the case in which one platform
is inactive and the other is active but yields exactly zero profits for the sellers, sellers
randomize among them.
But when are agents allowed to revise their choices? It is common in learning mod-

els to explicitly introduce some inertia allowing for the possibility that not all agents
are able to revise strategies simultaneously (or, for instance, accounting for idiosyn-
cratic switching costs). Different specifications of how revision opportunities arrive
give rise to different dynamics and often affect the results. Rather than adopting a

10In other words, we assume platform symmetry, i.e. the trader’s choice does not depend on the
identity of the platform but on its observable features - prices and quantities. In case of indifference,
both choice probabilities have to be strictly positive but might still depend on other observable
characteristics as e.g. the number of traders at each platform.
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specific formulation, here we follow Alós-Ferrer and Kirchsteiger [2] and postulate a
general class of dynamics encompassing the standard examples (and many others),
which are then reviewed below. See Alós-Ferrer [1] for a discussion.
Let E(k,ω) denote the event that agent k receives revision opportunity when the

current state is ω, and let E∗(k,ω) ⊆ E(k,ω) denote the event that agent k is the only
agent of his type (i.e. the only buyer or the only seller) receiving revision opportunity
in ω.

Assumption B1: Pr (E∗(k,ω)) > 0 for every agent k and state ω.

Notice that assumption B1 implies that Pr (E(k,ω)) > 0, i.e. every agent has
strictly positive probability of being able to revise at any given state. Further, since we
have two clearly differentiated populations, we introduce a weak form of independence
between the revision opportunities in those populations (it can actually be though of
as an anonymity requirement).

Assumption B2: For every agent k and state ω, either
Pr (E∗(k,ω) ∩E∗(k0,ω)) > 0 for any agent k0 of the other type, or
Pr (E∗(k,ω) ∩E(k0,ω)) = 0 for any such k0.

This assumption explicitly excludes non-anonymous situations where, say, when-
ever seller number 17 gets the opportunity to revise, buyers 3 and 6 also get the
opportunity to revise. Assumptions B1 and B2 are rather general. They are fulfilled
by the standard models considered in the literature of learning in games. In these
models, revision opportunities are either modelled through independent probabilities
(a case we call independent inertia; see e.g. Samuelson [32] or Kandori and Rob [23])
or assumed to arrive in an asynchronous way (a case we term non-simultaneous learn-
ing; see e.g. Blume [7], Binmore and Samuelson [6] or Benaïm and Weibull [5]).11

That is, our formulation covers the following standard examples.
Independent Inertia. There is an exogenous, independent (across traders and

periods) probability 0 < 1− ρ < 1 such that the agent does not get revision oppor-
tunity in a given state (inertia). Obviously, Pr (E∗(n,ω)) = ρ (1− ρ)n−1 > 0 for any
buyer n, and analogously for sellers, hence verifying B1. B2 follows from indepen-
dence: Pr (E∗(n,ω) ∩E∗(m,ω)) = Pr (E∗(n,ω)) · Pr (E∗(m,ω)) > 0 for any buyer n
and any seller m.
Non-simultaneous Learning. Each period, only one agent (i.e. either a

buyer or a seller) is (randomly) selected and allowed to revise his strategy. Hence,
Pr (E∗(k,ω)) = 1

|N |+|M | for any trader k (verifying B1), and Pr (E
∗(n,ω) ∩E(m,ω)) =

0 for any pair of buyers and sellers (verifying B2).
Non-simultaneous Learning within Types. In our case, it is natural to

conceive a dynamics where in every period, only one buyer and one seller are selected
11The reason we explicitly choose Assumptions B1, B2 is that, in the literature of learning in

games, many models are not robust to minute changes in the dynamic assumptions. We want to
make explicit that our model is not so sensible to the details of the dynamics.
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(randomly and independently) and given the opportunity to revise. Assumption B1
holds because Pr (E∗(n,ω)) = 1

|N | > 0 for any buyer n and Pr (E
∗(m,ω)) = 1

|M | > 0
for any seller m. Assumption B2 holds by independence.
Note that the second part of Assumption B2 is the one that specifically al-

lows for dynamics where only one agent at all is allowed to revise each period
(non-simultaneous learning). If this part were dropped (which still allows for non-
simultaneous learning within types and independent inertia), the modified Assump-
tion B2 would imply B1.
The specification above allows for more general learning processes than those

described by independent inertia or non-simultaneous learning. Since the revision
probability Pr (E(k,ω)) is a function of the state ω, it might depend e.g. on the dif-
ference between the evaluation of the outcomes of both platforms (so that unsatisfied
traders are more likely to revise), or on idiosyncratic characteristics of the currently
chosen platform.
Assumptions A, B1, and B2 define a stationary Markov chain on the (finite)

state space Ω. Given two states ω,ω0 ∈ Ω, denote by P 0 (ω,ω0) the probability of
transition from ω to ω0 in one period for the unperturbed learning process, i.e. for
the process without experimentation. The transition matrix of the process is given
by P 0 = [P 0 (ω,ω0)]ω,ω0∈Ω.
To fully characterize the unperturbed learning dynamics, it is useful to summarize

the basic results of Markov chains. An absorbing set12 of the unperturbed dynamics
is a minimal subset of states which, once entered, is never abandoned. An absorbing
state is an element which forms a singleton absorbing set, i.e. ω is absorbing if and
only if P 0 (ω,ω) = 1. States that are not in any absorbing set are called transient.
Every absorbing set of a Markov chain P induces an invariant distribution, i.e.

a distribution over states μ ∈ ∆ (Ω) which, if taken as initial condition, would be
reproduced in probabilistic terms after updating (more precisely, μ · P = μ). The
invariant distribution induced by an absorbing set A ⊆ Ω has support A. The set of
all possible invariant distributions of the process is the convex hull of the invariant
distributions associated to the absorbing sets. By the Ergodic Theorem, the invariant
distribution associated to a given absorbing set describes the time-average behavior of
the system once (and if) it gets into that class. That is, μ (ω) is the limit of the average
time that the system spends in state ω, along any sample path that eventually gets
into the corresponding absorbing set. If, additionally, the absorbing set is aperiodic,13

then the associated invariant distribution describes also the long-run probabilities of
the states in the class, limT→∞ q · P T = μ for all probability distributions q whose
support is contained in the absorbing set. This result is referred to as the Fundamental
Theorem of Markov Chains.
12Also called recurrent communication class or limit set.
13Loosely speaking, an absorbing set is aperiodic if it contains no deterministic non-trivial cycles.

A sufficient condition for aperiodicity is that for some state ω in the set, P (ω,ω) > 0. Note also
that any absorbing state is aperiodic.



On the Evolution of Market Institutions: The Platform Design Paradox12

A Markov chain is ergodic if it has a unique absorbing set, and irreducible if that
absorbing set coincides with the full state space Ω. For an ergodic chain, the (unique)
invariant distribution constitutes the long-run prediction, since it represents the limit
behavior of the process independently of initial conditions. If the process is not
ergodic, then several invariant distributions exist, describing the long-run behavior
along different sample paths, i.e. the prediction depends on the initial conditions.
Depending on the characteristics of the platforms, the unperturbed dynamics can

be ergodic, or irreducible, or might exhibit a multiplicity of absorbing sets.

Lemma 1. Assume A, B1, and B2.

(a) If βi > 1 and βj > 1, the only absorbing sets of the unperturbed dynamics
are the two singletons made of monomorphic states ω∗i (i = 1, 2) such that
Ni(ω

∗
i ) = N,Mi(ω

∗
i ) =M .

(b) If βi > 1 and βj ≤ 1, the unperturbed dynamics is ergodic and the only absorb-
ing set is the singleton made of the monomorphic state ω∗i .

(c) If βi ≤ 1 and βj ≤ 1, the unperturbed dynamics is irreducible, i.e. the whole
state space Ω forms an absorbing set.

Proof. See Appendix.
The previous Lemma shows that depending on the properties of the platforms

there is more than one absorbing set. In order to select among them, we study in the
next section the stability properties of the platforms with respect to experimentation.

Perturbed Learning Process. Following the literature on this type of learning
models, we proceed to study stochastic stability with respect to experimentation. To
do so, the dynamics is enriched with a perturbation in the form of experiments (or
mistakes) as follows. With an independent, small probability ε > 0, each agent, in
each round, might experiment (or make a mistake or “mutate”), and simply pick a
platform at random,14 independently of other considerations.
The dynamics with experimentation is called perturbed learning process. Its tran-

sition matrix is denoted by P ε. Since experiments make transitions between any two
states possible, the perturbed process has a single absorbing set formed by the whole
state space (i.e. the process is irreducible). Hence, the perturbed process is ergodic.
The corresponding (unique) invariant distribution is denoted μ (ε). The limit invari-
ant distribution (as the rate of experimentation tends to zero) μ∗ = limε→0 μ (ε) exists
and is an invariant distribution of the unperturbed process P 0 (see e.g. Kandori et
al. [22], Young [36], or Ellison [11]).

14We mean that an institution is picked up according to a pre-specified probability distribution
having full support, for instance uniformly. The exact distribution does not affect the results, as
long as it has full support, and does not depend on ε.
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The limit invariant distribution singles out a stable prediction of the unper-
turbed dynamics, in the sense that, for any ε > 0 small enough, the play ap-
proximates that described by μ∗ in the long run. The states in the support of μ∗,
i.e. {ω ∈ Ω |μ∗ (ω) > 0} are called stochastically stable states or long-run equilibria.
Clearly, the set of stochastically stable states is the union of some absorbing sets of
the original, unperturbed chain (ε = 0).
In the sequel, whenever we say absorbing sets or states, we refer to the unperturbed

dynamics. Since the perturbed dynamics is irreducible, no confusion should arise.
We will rely on the characterization of the set of stochastically stable states de-

veloped by Kandori et al. [22] and Young [36]. Detailed overviews can be found e.g.
in Ellison [11], Fudenberg and Levine [16] or Samuelson [33].
Given two absorbing sets X and Y , let c(X,Y ) > 0 (referred to as the transition

cost from X to Y ) denote the minimal number of experiments necessary for a direct
transition from X to Y , i.e. a positive probability path starting in an element of X
and leading to an element in Y , which does not go through any other absorbing set.
In our case, the stochastic stability analysis is simple because of Lemma 1.

Theorem 2. Assume A, B1, and B2.

(a) If βi > 1 and β2 > 1, only the two monomorphic states can be stochastically
stable. Further, ω∗i is stochastically stable if and only if c(ω

∗
i ,ω

∗
j ) ≥ c(ω∗j ,ω∗i ).

(b) If βi > 1 and βj ≤ 1, the only stochastically stable state is the monomorphic
state ω∗i .

(c) If β1 ≤ 1 and β2 ≤ 1, all states in Ω are stochastically stable.

Proof. (b) and (c) are trivial, since the set of stochastically stable states is
always non-empty, only states in absorbing sets can be stochastically stable, and all
states in the same absorbing set are simultaneously either stochastically stable or not.
Part (a) follows from the characterization quoted above for the simple case with only
two absorbing states.

3.2. The long run trading patterns. We now proceed to analyze the stochastic
stability of platforms depending on the values of the parameters si = (βi, fi) and
sj = (βj, fj).
As a benchmark, we start with the case of identical platform design. To analyze

platforms with identical characteristics (si = sj), we observe that, for every state
ω ∈ Ω we can uniquely define a so-called mirror state eω by changing the platform
affiliation of all traders, that is, eω is the only state such that Mj(eω) = Mi(ω) and
Nj(eω) = Ni(ω). Then,
Lemma 3. Suppose si = sj. Then, μ∗(ω) = μ∗(eω) ∀ω ∈ Ω.
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Proof. Follows directly from P (ω,ω0) = P (eω, eω0) ∀ω,ω0 ∈ Ω which holds for
si = sj due to platform symmetry (recall Assumption A).
Theorem 2 already identifies the set of stochastically stable states whenever at

least one platform i has a price bias βi ≤ 1. Hence we are left with design configura-
tions si and sj where both price biases favor sellers (i.e. βi,βj > 1). There, Theorem 2
indicates that full coordination on both platforms are the only possible stochastically
stable states. To further pin down the long-run trading pattern, it proves useful to
distinguish the two platforms with respect to their prices. We start with the platform
which implements a (weakly) lower price.

Lemma 4. Suppose βi,βj > 1 and pi =
βic
1−fi ≤

βjc

1−fj = pj. Then, c(ω∗i ,ω
∗
j ) ≥ 2 =

c(ω∗j ,ω
∗
i ) and ω∗i is stochastically stable.

Proof. If pi ≤ pj, buyers (weakly) prefer platform i to platform j whenever it
is active. Accordingly, ω∗i can be reached from ω∗j with just two mutations. To see
this, suppose the system is in state ω∗j . A buyer and a seller switching to platform i
due to experimentation induce trade at platform i. B1 and B2 guarantee that there
is a positive probability that first all buyers at platform j get the opportunity to
revise their platform choice (and switch to i because of the lower price or because of
indifference) and subsequently all sellers at platform j can revise and also switch to
platform i as this is now the only platform that generates positive profits for them.
Hence, c(ω∗j ,ω

∗
i ) = 2. Clearly c(ω∗i ,ω

∗
j ) ≥ 2 as at least one seller and one buyer

have to switch to platform j to induce trade. Then, Theorem 2(a) implies stochastic
stability of ω∗i .
We now turn to the stochastic stability of a platform with a strictly higher price

(provided that the biases of both platforms favor sellers). While all our previous
results did not depend on the modelling details such as (i) absolute population size of
buyers and sellers, (ii) the relative size of these populations, (iii) the heterogeneity of
buyers, (iv) the price elasticity of demand, (v) the grid size δ, and (vi) details of the
learning process (e.g. adjustment speed, asymmetries between buyers and sellers),
these details do matter now as the following results illustrate.

Lemma 5. Suppose βi,βj > 1, pi =
βic
1−fi <

βjc

1−fj = pj, so that ω∗i is stochastically
stable.

(a) in a dynamics with independent inertia, ω∗j is also stochastically stable (i.e.
c(ω∗i ,ω

∗
j ) = 2) if and only if there is at least one buyer en ∈ N such that

den
µ

βjc

1− fj

¶
(βj − 1) ≥

1

|M |− 1DN\{en}
µ

βic

1− fi

¶
(βi − 1).

(b) in a dynamics with non-simultaneous learning, ω∗j is also stochastically stable
(i.e. c(ω∗i ,ω

∗
j ) = 2) if and only if there is at least one buyer en ∈ N such that

1

|M |− 1den
µ

βjc

1− fj

¶
(βj − 1) ≥ DN\{en}

µ
βic

1− fi

¶
(βi − 1).
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Proof. See Appendix.
Note that the condition in Lemma 5(a) is violated whenever e.g. buyers are iden-

tical, |N | ≥ |M |, and the price elasticity of demand is sufficiently high. In contrast,
the condition can be satisfied for βj > βi whenever e.g. buyers are sufficiently het-
erogeneous (i.e. ∃ en ∈ N such that den(p) >> dn(p) ∀n 6= en), or buyers are identical
and |M | >> |N |, or d(p) is sufficiently inelastic.
The stochastic stability of ω∗j is harder to establish if the dynamics is slow as e.g.

under non-simultaneous learning. The condition in Lemma 5(b) is violated whenever
e.g. buyers are identical and the price elasticity of demand is sufficiently high (in
contrast to the case of independent inertia, this holds independently of the sizes of
populations |M | and |N |). The condition can be fulfilled for βj > βi if e.g. buyers are
sufficiently heterogeneous or buyers are identical and demand is sufficiently inelastic.

Remark 1. The analysis in the previous lemmata establishes stochastic stability
through transition paths involving at most two simultaneous mutations. In the ter-
minology of Ellison [11], this implies that the estimated time of first arrival, i.e. the
estimated time until a stochastically stable state is first observed, is of order ε−2.
Thus the speed of convergence is relatively high. The number of mutations needed
for the relevant transitions does not increase with the population size. Hence, our
dynamics escape the well-known critique that for large populations the long run may
actually be “too long” to be relevant (see Kandori et al. [22] or Ellison [10]).

3.3. Platform Revenues and Designers’ Profits. Till now we have analyzed
the learning dynamics of the traders and the resulting long run pattern of trades.
Next turn to the revenues generated by the platforms, which in turn determine the
profits of the market designers.
When analyzing the market designers’ choice of the characteristics of the trad-

ing platforms we will assume that platform designers are long-lived, patient, and
(relatively) rational agents when compared with individual buyers or sellers. Hence,
the designers take only the long term expected revenues into account, and ignore
revenues made during the adjustment process to the limit invariant distribution.15

Given the platform characteristics s = (si, sj), the long-run expected revenues per
round ERi(s) depend on the limit invariant distribution. The profits of designer i
are given by πD,i(s) = fiERi(s) implying that πD,i(s) ≥ 0 for all s.
Consider first a platform i with βi < 1.

Lemma 6. Suppose βi < 1. Then πD,i ((βi, fi) , sj) = 0 for all feasible fi, sj.

15Otherwise, the payoffs of a market designer would not only depend on the characteristics of both
platforms, but also on the initial distribution of the traders over the platforms. In the absence of a
plausible theory on the initial distribution, the results would be arbitrary. Further, as pointed out
in Remark 1, convergence to full coordination is fast, and hence the assumption is, to some extent,
justified.
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Proof. Follows immediately form the fact that trade is never possible on plat-
forms with βi < 1.
Hence, we are left with platform configurations (si, sj) where both platforms have

a price bias weakly bigger than one. In this case expected revenues at platform i
depend not only on the design of this platform but also on the design of the other
platform as the following results indicate.

Lemma 7. Consider a platform configuration s = (si, sj) with si = (βi, fi), sj =
(βj, fj) and prices pi = βi

c
1−fi , pj = βj

c
1−fj .

(a) If si = sj, then, πD,k(s) = 1
2
fkpkDN (pk) > 0 for k = 1, 2.

(b) If βi = βj = 1 and fi < fj, then fkpkDN (pk) > πD,k(si, sj) > 0 for k = 1, 2.

(c) If βi > 1 and βj ≤ 1, then πD,i(si, sj) = fipiDN (pi) and πD,j(sj, si) = 0.

(d) If βi,βj > 1, pi ≤ pj, and c(ω∗i ,ω
∗
j ) > 2, then πD,i(si, sj) = fipiDN (pi) and

πD,j(si, sj) = 0.

(e) If βi,βj > 1, pi ≤ pj, and c(ω∗i ,ω∗j ) = 2, then πD,k(si, sj) = μ∗(ω∗k)fkpkDN (pk) >
0 for k = 1, 2.

Proof. (a) follows directly from Lemma 3 as the price and the traded quantity
in ω at platform i are identical to price and quantity in eω at platform j. To see (b),
recall from Theorem 2(c) that every ω ∈ Ω is stochastically stable if βi = βj = 1.
Hence, there is a strictly positive probability for trade (i.e. positive revenues) at each
platform. (c) follows directly from Theorem 2(b). (d) and (e) follow directly from
Theorem 2(a) and Lemma 4.

4. The Platform Design
We now compare the design choices by a monopolistic designer and by two competing
designers. Observe for reference that, as shown in the last Lemma 7, the designers’
expected revenues are always weakly positive.

4.1. Monopolistic Market Design. As a benchmark, we briefly consider the
case where only one platform is available, with characteristics s = (β, f). In this case
traders have no choice but to use this platform. Designer’s profits are given by:

πD(s) =

(
f βc
1−fDN

³
βc
1−f

´
if β ≥ 1

0 otherwise.

What is the profit maximizing platform (β∗, f∗)? Note first that for β < 1 the
profits are zero, whereas for β ≥ 1 and for 0 < f < 1 the profits are strictly positive.
Hence, β∗ ≥ 1. Now assume for a moment that β and f are continuous variables with
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f ∈ [0, 1] and β ∈ (0,∞). Denote p = βc
1−f and recall that limp→∞ dn(p)p = 0 for all

n ∈ N . Hence, it must hold that 0 < f∗ < 1.
Differentiating the designer’s profits yields (for β ≥ 1)

∂πD
∂f

(β, f) = pDN(p) + f
∂p

∂f
[DN(p) + pD

0
N(p)]

∂πD
∂β

(β, f) = f
∂p

∂β
[DN(p) + pD

0
N(p)]

where ∂p
∂f
= βc

(1−f)2 > 0 and ∂p
∂β
= c

1−f > 0. Let the optimal price be p∗ = β∗c
1−f∗ .

Since 0 < f∗ < 1, the first order conditions for the designer’s optimum imply that
∂πD
∂f
(β∗, f∗) = 0, thus DN(p∗) + pD0

N(p
∗) < 0. This implies that, ∂πD

∂β
(β∗, f∗) < 0,

which leads to the conclusion that the designer’s profits are maximized at the corner
solution β∗ = 1.
Of course, in our model β and f are not continuous variables. However, if the grid

of feasible fees is fine enough, the optimal fee approximates the one of the continuous
case, and hence the optimal β is 1 also in the discontinuous case. Hence we conclude
that a monopolistic market designer would introduce a market clearing platform,
because such an platform allows him to reap the highest profits.
The intuitive reason for this result is as follows. Suppose revenues pDN(p) are

maximized at price p∗. Note that this price can be attained with different (β, f)
combinations and that p∗ = βc

1−f is increasing both in β and f . Since the monopolist
designer’s profits are fpDN(p), he will try to reach p∗ with that (β, f) combination
that has the highest fee, and hence the lowest possible β ≥ 1.

4.2. Competitive Market Design. In order to reflect that platform designers
are “more rational” than individual buyers and sellers, we simply consider them
rational players in the normal-form game defined by these payoff functions. That is,
both designers choose their platforms simultaneously and payoffs are given as above.
We also allow designers to use mixed strategies, i.e. choose a probability distribution
over S rather than picking up a particular characteristic for sure.
Denote by σi the (mixed) strategy of designer i. The expected payoff of a designer

is

πD,i(σi,σj) =
X
sj∈S

X
si∈S

σj(sj)σi(si)fiERi(si, sj).

Further, πD,i(si,σj) denotes the expected payoff if designer i chooses si for sure and
j chooses the probability distribution σj.
We will now analyze the Nash equilibria of this game, implicitly assuming that

designers are rational in the game theoretical sense. That is, we consider asymmetric
rationality where designers are comparatively more sophisticated than traders.16

16Our main results also hold if we consider boundedly rational market designers as shown in
Appendix B.1.
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The sets of pure strategies of designer i and j are given by Si = Sj = B × F .
Since these sets are finite, a Nash equilibrium of the designers’ game always exists
(possibly in mixed strategies). To characterize these equilibria, we need the following
Lemma.

Lemma 8. Let (σ∗i ,σ∗j ) be a Nash equilibrium (possibly in mixed strategies). Then,
for any pure strategy si = (βi, fi) of player i such that σ∗i (si) > 0, it holds that βi ≥ 1.

Proof. Assume to the contrary that there exists a pure strategy si = (βi, f i)
with σ∗i (si) > 0 and βi < 1. By Lemma 6 this pure strategy gives designer i a profit of
zero against all strategies of j. Hence, πD,i(si,σ∗j ) = 0, and, since σ

∗
i is an equilibrium

strategy, πD,i(σ∗i ,σ
∗
j ) = 0.

Suppose that, in equilibrium, j chooses only platforms with βj < 1. That is,
βj < 1 for all sj = (βj, fj) ∈ S with σ∗j (sj) > 0. In this case, if designer i chooses
with certainty a platform s0i with β0i > 1, Lemma 7(c) implies that πD,i(s

0
i,σ

∗
j ) =

f 0i
β0ic
1−f 0i

DN
³

β0ic
1−f 0i

´
> 0. Since πD,i(σ∗i ,σ

∗
j ) = 0, this contradicts that (σ

∗
i ,σ

∗
j ) is a Nash

equilibrium.
Thus, there must exist an sj with βj ≥ 1 such that σ∗j (sj) > 0. Then, if de-

signer i deviates to the pure strategy s0i = sj, πD,i(s0i,σ
∗
j ) = σ∗j (sj)fiERi(s

0
i, sj) +P

sj∈S8sj
σ∗j (sj)πD,i(s

0
i, sj). Since by Lemma 7(a) ERi(s

0
i, sj) > 0, we conclude that

πD,i(s
0
i,σ

∗
j ) > 0, again contradicting that (σ

∗
i ,σ

∗
j ) is a Nash equilibrium.

Hence, we have shown that, in equilibrium, only platforms weakly biased in favor
of the sellers can be chosen. We now want to show that, actually, in any equilibrium,
both designers will introduce platforms that lead to prices strictly above the market
clearing level - platforms that lead to market clearing prices will not be designed in
equilibrium. This results holds as long as the grid of possible biases is fine enough.

Theorem 9. Let (σ∗i ,σ
∗
j ) be a Nash equilibrium (possibly in mixed strategies). For

any pure strategy si = (βi, fi) of player i such that σ∗i (si) > 0, it holds that βi > 1 if
δ is sufficiently small.

Proof. By the previous lemma, only platforms with β ≥ 1 will be designed
in equilibrium. Assume by contradiction that there exist some pure strategies si =
(βi, fi) with σ∗i (si) > 0 and βi = 1.Denote a strategy of this type by si = (1, fi) and let
p = c

1−fi
. Denote the carrier or support of σ∗j byC(σ

∗
j ) =

©
sj = (βj, fj) ∈ S

¯̄
σ∗j (sj) > 0

ª
.

Suppose that, for all sj ∈ C(σ∗j ) we actually had that βj > 1.This implies by
Lemma 7(c) that πD,i(σ

∗
i ,σ

∗
j ) = πD,i(si,σ

∗
j ) = 0. Take any s0i = s0j ∈ C(σ∗j ). By

Lemma 7(a), and recalling that πD,i(si, sj) ≥ 0 for all si, sj, we obtain that

πD,i(s
0
i,σ

∗
j ) ≥ σ∗j (s

0
j)f

0
jERj(s

0
i, s

0
j) > 0.

Hence, player i would have an incentive to deviate from σ∗i , a contradiction.
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We conclude that there exists some sj ∈ C(σ∗j ) with βj = 1. Let C1(σ∗j ) =©
sj = (βj, fj) ∈ C(σ∗j ) |βj = 1

ª
. Notice that, since si = (1, fi), we have by Lemma

7(c) that πD,i(si, sj) = 0 for all sj ∈ C(σ∗j ) with βj > 1. Then, by Lemma 7(a) and
(b),

πD,i(si,σ
∗
j ) <

X©
σ∗j (sj)fipDN (p)

¯̄
sj ∈ C1(σ∗j )

ª
However, for any s0i with β0i > 1 and f

0
i = fi,

πD,i(s
0
i,σ

∗
j ) ≥

X©
σ∗j (sj)fiβ

0
ipDN (β

0
ip)
¯̄
sj ∈ C1(σ∗j )

ª
due to Lemma 7 (c) (the inequality follows from the fact that πD,i(s0i, sj) ≥ 0 for all
sj). This latter expression is continuous in β0i. Thus, for β

0
i approaching one from

above, πD,i(s0i,σ
∗
j ) > πD,i(si,σ

∗
j ) = πD,i(σ

∗
i ,σ

∗
j ). Hence, if the grid is fine enough

17

player i has an incentive to deviate from σ∗i to an institution with β0i > 1 but close
enough to 1. A contradiction.
We have thus established the paradoxical result that competition among plat-

form designers will induce them to select biased platforms which implement non-
competitive market outcomes. In general, nothing more can be said about the spe-
cific characteristics of the Nash equilibria. A brief examination of Lemma 5 and
Lemma 7(d) and (e) should convince the reader that a full characterization of the
Nash equilibria will depend on the exact shape of the limit invariant distribution,
and not only on its support. This distribution in turn depends on the details of the
dynamics, e.g. whether learning opportunities arise simultaneously among traders
or asynchronously. In contrast, the last theorem holds for any specification of the
learning dynamics satisfying assumptions B1 and B2.
Still, one might suspect that competition leads to platforms close to the market

clearing one, i.e. to platforms with βi = 1 + δ. If this suspicion would be correct,
the chosen platforms would nearly resemble market clearing ones as long as the grid
of feasible biases is fine enough. The next proposition, however, shows that this
suspicion is in general wrong. To keep things simple consider identical buyers with a
demand function d(p) and denote the price elasticity of demand by ²p(p) = −pd

0(p)
d(p)

.

Proposition 10. Assume independent inertia, identical buyers and |M | = |N |. Sup-
pose that the grids B and F are fine enough and if ²p is not much larger than one.
Then,
i) there exists no Nash equilibrium (σ∗i ,σ

∗
j ) (possibly in mixed strategies) where

both designers introduce only platforms with βi = βj = 1 + δ;
ii) there exists no pure strategy Nash-equilibrium (s∗i , s

∗
j) of the design game with

β∗i = β∗j = 1 + δ.

17The grid can be assumed to be ex ante fine enough by a uniform continuity argument.
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Proof. See Appendix.
This proposition shows that equilibrium designs (beyond the features highlighted

in Theorem 9) are in general rather sensitive to details of the economy and the learning
process. For example it can also not be exclude that designers choose ”near market
clearing” platform characteristics for some specifications of the learning dynamics. In
general, however, this will not prove optimal.

5. Discussion
We have shown that if several trading platforms are available, traders will learn to
coordinate on a platform with prices systematically above the market clearing level,
if such a platform is feasible. This forces competing market designers to create such
non-market clearing platforms. On the other hand a monopolistic market designer
will always introduce a market clearing platform in order to maximize his profits.
Hence, platform competition induces non-competitive market outcomes.
We view this result as a paradox, since it amounts to the statement that compe-

tition among market designers might induce non-competitive outcomes on the plat-
forms. Of course, though, this result depends on several assumptions we have made.
First, we have assumed sellers to be producers endowed with a technology with

constant returns to scale. Although this is a focal, economically meaningful case,
it clearly simplifies the analysis and allows for a clear-cut derivation of the results.
Under production technologies exhibiting decreasing returns to scale, the results are
not so sharp and a characterization of the limit invariant distribution requires both a
further specification of the learning behavior of the traders and a further specification
of demand and supply. In Appendix B we exhibit an extended example with decreas-
ing returns to scale where our main result still holds. It shows, however, that the
optimality of a price bias is no longer independent of details like learning velocities.
In particular, if one side of the market learns much faster, it might pay off to bias
prices to favor this party. Nonetheless, this clearly illustrates that the scope of the
paradox identified here goes beyond the constant returns to scale case.
Second, we have focused on an asymmetric rationality model where market de-

signers are sophisticated when compared to traders. Furthermore, by focusing on
long-run profits we have implicitly assumed that it is much more difficult for de-
signers to change the properties of their platforms than for traders to switch trading
platforms. In Appendix B we analyze the case of boundedly rational designers who
have to learn how to design a platform through a regular (trial-and-error) design re-
vision process. Our main result - the emergence of non-market clearing institutions -
carries over to such a setting.
These robustness checks show that neither the assumption of constant returns to

scale technology nor that of rational designers drive our results. Rather, it is indeed
platform competition that leads to the emergence of non-market clearing trading
platforms.
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APPENDIX

A. Proofs
A.1. Proof of Lemma 1. We first prove the following preliminary claim. The
monomorphic state ω∗i can be reached with positive probability from any state where
platform j 6= i is inactive. To see this, simply notice that, by Assumptions A and B1,
there is positive probability that traders will switch away from the inactive platform
j until ω∗i is reached. An immediate consequence of this claim is that, from the
“cross-states” where both platforms are inactive, i.e. all buyers are at one platform
and all sellers are at the other platform, both monomorphic states can be reached.
(a) Let β1 > 1 and β2 > 1. First note that the monomorphic states are absorbing,

because at the corresponding platform both buyers and sellers make strictly positive
profits and the other platform is inactive. Thus traders stay at the active one.
To complete the proof, it is enough to show that there exists a positive probability

path from any state to some of the monomorphic states. By the preliminary claim,
this is true if any platform is inactive. Consider, thus, an arbitrary ω ∈ Ω such that
1 ≤ |Ni(ω)| ≤ |N |− 1 and 1 ≤ |Mi(ω)| ≤ |M |− 1.
Without loss of generality, suppose p(si) ≤ p(sj). Buyers weakly prefer platform

i to platform j. By B1 and B2, there is positive probability that all buyers at j
receive revision opportunity in successive periods and only sellers at j receive revision
opportunity. Hence, buyers will switch away from j and no new seller will switch to j.
Thus, either the monomorphic state ω∗i is eventually reached, or j becomes inactive,
leading again to ω∗i with positive probability.
(b) Let βj ≤ 1 and βi > 1. Provided i is active, sellers strictly prefer it to

platform j, regardless of prices. As above, the monomorphic state ω∗i is absorbing.
The monomorphic state ω∗j is not. To see this, note that sellers always receive zero
profits at j and will switch to i with positive probability even if profits there are
zero (the latter due to randomization in case of indifference). Thus, starting at ω∗j ,
with positive probability j becomes inactive such that ω∗i is reached with positive
probability.
By the preliminary claim, from any state where platform j is inactive the monomor-

phic state ω∗i can be reached. If i is inactive, then ω
∗
j is reached, but then the dynamics

leads to ω∗i with positive probability.
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Consider an arbitrary ω such that 1 ≤ |Ni(ω)| ≤ |N | − 1 and 1 ≤ |Mi(ω)| ≤
|M |−1. By B1 and B2, there is positive probability that all sellers at j receive revision
opportunity in successive periods and only buyers at j receive revision opportunity.
Hence, sellers will switch away from j and no new buyer will switch to j. Eventually,
either the monomorphic state ω∗i is reached, or j becomes inactive (which again leads
to ω∗i with positive probability).
(c) Last, suppose βi ≤ 1 and βj ≤ 1. If both βi < 1 and βj < 1, both platforms

are always inactive. Hence every trader randomizes when given revision opportunity,
thus the process is obviously irreducible.
If βj < 1 and βi = 1, sellers always receive zero profits and always randomize.

Buyers, though, switch away from the inactive platform j whenever platform i is
active and they receive revision opportunities, while they randomize whenever i is
inactive. Thus, from any state, there is always positive probability to reach the
monomorphic state ω∗i . From this state, any state in

ΩBi = {ω |Ni(ω) = N }

can be reached. Further, since sellers simply randomize, they might eventually all
switch to platform j, reaching the cross state in which all sellers are at j and all
buyers are at i. As long as all sellers are in j, buyers merely randomize. That is, any
state in

ΩSj = {ω |Mj(ω) =M }

can be reached. Consider an arbitrary state ω0 with |Ni(ω0)| > 0. This state can
be reached from a state ω ∈ ΩSj with Ni(ω) = Ni(ω

0) by letting sellers switch to
i and giving revision opportunity only to buyers at i, who will stay there. Finally,
consider a state ω0 with Ni(ω0) = ∅, i.e. Nj(ω0) = N . This state can be reached from
the monomorphic state ω∗j ∈ ΩSj by letting sellers randomize appropriately, because
buyers who receive revision opportunity are indifferent (both platforms are inactive)
and will stay at j with positive probability.
In summary, any state can be reached from ω∗i , and the latter can be reached from

any state. This completes the argument if βj < 1 and βi = 1.
The only remaining case is βi = βj = 1. In this case, sellers always obtain zero

profits and hence randomize. Buyers in turn want to move away from inactive plat-
forms. If both platforms are inactive, they randomize, too. However, since sellers
simply randomize, it is clear that, from an arbitrary state, any platform might even-
tually become inactive by lack of sellers. It follows from the preliminary claim that,
from any state, both monomorphic states can be reached.
From the monomorphic states, since sellers still simply randomize, all states at

ΩBi and ΩBj (see above) can be reached - in particular the cross states. Then, buyers
also randomize. As long as sellers stay concentrated at one platform, buyers strictly
prefer that platform if it became active. That is, we can construct positive probability
paths to any state in ΩSj and ΩSi (see above). Again, since sellers merely randomize,
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we can construct positive probability paths to any state ω0 with 0 < |Ni(ω0)| < |N |
by letting sellers switch appropriately and giving revision opportunity only to buyers
who are already at i. This completes the argument if βi = βj = 1.

A.2. Proof of Lemma 5. It has been shown in the proof of Lemma 4 that
c(ω∗j ,ω

∗
i ) = 2 if βi,βj > 1 and pi ≤ pj. Hence, a necessary and sufficient condition

for the stochastic stability of ω∗j is c(ω
∗
i ,ω

∗
j ) = 2.

Since pi < pj, buyers never switch to platform j as long as i is active. Hence,
ω∗j has to be reached through switching of all sellers to platform j and a subsequent
switch of all buyers to the only remaining active platform.
In case (a), if the unperturbed dynamics is described by independent inertia,

there is a positive probability that all sellers at platform j simultaneously receive the
opportunity to revise. If one seller and buyer en ∈ N are already present at platform
j, sellers will indeed switch to j if den( βjc

1−fj )(βj − 1) ≥
1

|M |−1DN\{en}
³

βic
1−fi

´
(βi − 1).

Hence, this condition proves to be sufficient for the stochastic stability of ω∗j . To see
that the condition is also necessary suppose that it is violated. Then no seller will
switch to j after one seller and any buyer en induced trade on this platform. As a
consequence, more than 2 mutations are needed to reach ω∗j .
In case (b), under non-simultaneous learning there is only one trader in any pe-

riod who has the opportunity to revise its platform choice. Suppose one seller and
buyer en switch to platform j by mutation. Suppose furthermore that in the subse-
quent rounds only sellers and buyers at platform i receive the opportunity to revise
their decision (this happens with strictly positive probability due to B1 and B2). If
1

|M |−1den( βjc

1−fj )(βj − 1) ≥ DN\{en}
³

βic
1−fi

´
(βi − 1) it follows that 1

|Mj |den( βj
1−fj )(βj − 1) ≥

1
|M |−|Mj |DN\{en}

³
βi
1−fi

´
(βi − 1) for all Mj with 1 ≤ |Mj| ≤ |M | − 1. Hence, sellers

prefer platform j whenever it is active and there are at least one and less than |M |
sellers already there. This implies that there is a positive probability path with just
two mutations from ω∗i to ω∗j where first all sellers move to platform j and subse-
quently all buyers switch to j as it is the only active platform. Hence, the condition
displayed in the Lemma is sufficient for the stochastic stability of ω∗j . To see that
it is also necessary, suppose it is not fulfilled. Then a seller at platform i prefers to
stay there if all other sellers are at platform j together with any buyer en. Under
non-simultaneous learning this implies that at least a third mutation is needed to
reach ω∗j , which implies that this state cannot be stochastically stable by Theorem
2(a).

A.3. Proof of Proposition 10. Note first that Lemma 5 (a) implies that if
βic
1−fi <

βjc

1−fj , ω
∗
j is stochastically stable iff

d

µ
βjc

1− fj

¶
(βj − 1) ≥ d

µ
βic

1− fi

¶
(βi − 1). (*)
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Proof of i) Assume to the contrary for all platform characteristics in the support
of σ∗i and σ∗j , β = 1 + δ. Denote by f i the highest fee of a platform in the support
of σ∗i , and by f j the highest fee of a platform in the support of σ∗j . Without loss of
generality assume that f j ≥ f i. We can distinguish between three cases:
a) f j > f i: Condition (*) shows that full coordination on platform sj = (1+δ, f j)

is not stochastically stable vis a vis any platform characteristics in the support of σ∗i .
Hence, this strategy earns designer j zero profits, and since it is assumed to be in
the support of j’s equilibrium strategy, j’s equilibrium profits would be zero. But j
could always guarantee himself a strictly positive profit by playing the same (possibly
mixed) strategy as i. Hence, case (a) is inconsistent with Nash equilibrium.
b) f i = f j > fmin .. Condition (*) shows that full coordination on platform

si = (1+δ, f i) is not stochastically stable vis a vis any platform characteristics in the
support of σ∗j but platform sj = (1 + δ, f j). Furthermore, Lemmata 2 and 3 imply
that μ∗(ω∗i ) = μ∗(ω∗j ) =

1
2
if si is chosen by i and sj is chosen by j. Therefore,

πD,i(si,σ
∗
j ) = σ∗j (sj)

1

2
f i
(1 + δ)c

1− f i
|N |d

µ
(1 + δ)c

1− f i

¶
.

But choosing the alternative platform design s0i with f
0
i = f j − γ, and β0i = 1 + δ

implies that 1+δ
1−f 0i

c < 1+δ
1−fj

c and d
³
1+δ
1−fj

c
´
δ < d

³
1+δ
1−f 0i

c
´
δ. Hence, again by (*)

μ∗(ω∗i ) = 1 if s
0
i is chosen by i and sj is chosen by j, which yields

πD,i(s
0
i,σ

∗
j ) ≥ σ∗j (sj)(f i − γ)

(1 + δ)c

1− f i + γ
|N |d

µ
(1 + δ)c

1− f i + γ

¶
.

If the grid of F is fine enough, i.e. if γ is small enough, this implies

πD,i(s
0
i,σ

∗
j ) > πD,i(si,σ

∗
j )

Hence, case (b) is inconsistent with Nash equilibrium.
c) f i = f j = fmin - both designers choose the platform characteristics si = sj =

(1 + δ, fmin) for sure. Then Condition (*) guarantees the existence of a β
0
j > 1 + δ

and a f 0j > fmin such that platform j is stochastically stable vis a vis sj if the
grid F is sufficiently fine, i.e. if γ is sufficiently small. Furthermore, if ²p is not
much larger than 1, designer j’s profits from full coordination on his platform with
design s0j, i.e. |N | f 0j

β0jc

1−f 0j
d
³

β0jc

1−f 0j

´
, is strictly larger than the respective profit from

choosing sj, i.e. |N | f j (1+δ)c1−fj
d
³
(1+δ)c

1−fj

´
. It remains to show that no decrease in μ∗(ω∗j )

overcompensates this effect. To see this suppose that β
0
j > βj = 1 + δ in such a way
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that d(p0j)(β
0
j − 1) > |M ||N |d(pi)δ (feasible if δ is sufficiently small). Then sellers

prefer platform j with characteristics s0j whenever it is active, while buyers prefer
platform i with characteristics si. For a learning dynamics with independent inertia
and with |M | = |N | this establishes symmetry of the transition matrix P such that
μ∗(ω∗i ) = μ∗(ω∗j ) = 1/2. Therefore, choosing in this case β

0
j > 1 + δ and f 0j > f j does

not reduce μ∗(ω∗j ) while it strictly increases revenue in ω∗j . Hence, sj with βj = 1+ δ

and f i = fmin can not be a best response to si = (1 + δ, fmin).
Proof of ii) Follows immediately from i).

B. Robustness of the Results
The results in the paper have been derived under two crucial assumptions. First,
designers are assumed to be rational while traders are not (asymmetric rationality).
Even though this assumption seems to be justified in a wide range of applications, one
might be interested in the robustness or our results with respect to the (bounded)
rationality of designers. We will discuss the case of learning designers in section
B.1. Second, we assumed that sellers have a constant-returns-to-scale technology. In
section B.2 we will analyze an example with decreasing returns that illustrates the
robustness of our findings.

B.1. Boundedly Rational Designers. To account for learning designers, we
have to extend the state space by the feasible design configurations, and we have
to redefine the (unperturbed learning process). All other assumptions remain un-
changed.
The state space is given by Ω = {1, 2}n × {1, 2}m × S2. A state ω ∈ Ω denotes

the location of buyers and sellers and the design of both platforms. Traders learn as
specified in Assumption A. The learning process of designers is defined as follows.

Assumption C A designer who gets the opportunity to revise, observes the revenues
and designs of platforms in the last period. If the platforms have different de-
signs, he chooses the design which has led to a higher revenue (Imitation). In
case of identical revenues designers randomize their choice, with both designs
chosen with strictly positive probability. Choice probabilities may depend on
the outcomes (or designs) but not on the platform’s name. If designs are identi-
cal and a designer obtains zero revenues he randomizes over all possible design
alternatives in the next round (Innovation).18

As for the opportunities to revise we invoke Assumptions B1 and B2 (on the
enlarged state space and for three instead of two different types of players) as detailed
in the paper.19 To illustrate the robustness of our results with respect to boundedly

18For simplicity, we assume that designers randomize over S with full support. Our results would
carry over to more realistic treatments where designers use more sophisticated innovation methods.
19Note that this specification also allows for different learning speeds for traders and designers,

respectively. Our model covers, for instance, the likely situation that buyers and sellers revise with
a larger probability than designers.
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rational designers, we prove the counterpart of Lemma 1 in the modified learning
model.

Lemma 11. Assume assumptions A, B1, B2, and C. Then the absorbing sets are all
sets of the form Ai,β,f = {ω ∈ Ω|Ni(ω) = N,Mi(ω) = M, βi = β, fi = f} ∀β > 1,
f ∈ F , and i = 1, 2.

Proof. We proceed in two steps. First, we show that Ai,β,f is indeed absorbing
for any i, f , and β > 1. Second, we show that there is always a positive probability
path from any ω ∈ Ω\ ∪i,f,β>1 Ai,β,f to an ω0 ∈ ∪i,f,β>1Ai,β,f .
Fix any i, f and β > 1, and consider any ω ∈ Ai,β,f . As β > 1 buyers and

sellers receive strictly positive payoffs at i, and no type of trader wants to switch to
the inactive platform j. According to Assumption C designer i will not change the
design of his platform while designer j will innovate (randomize over S) if si = sj
in the last period, and he will imitate (choose sj = si) otherwise. Hence, once the
system reached a state in Ai,β,f buyers, sellers, and designer i will not alter their
choices and designer j will alternate between sj = si and a random draw out of S -
the system will not leave Ai,β,f .
Now fix a state ω ∈ Ω\∪i,f,β>1Ai,β,f and denote the designs of platform i and j in

this state by si = (βi, fi) and sj = (βj, fj), respectively. We distinguish four cases. (i)
βi,βj > 1, (ii) βi > 1 and βj ≤ 1, (iii) βi = βj = 1, and (iv) βi,βj < 1. As for (i) and
(ii) it has already been shown in the proof of Lemma 1 that for fixed platform designs
there is a positive probability path of the unperturbed dynamics to a monomorphic
state ω∗i with βi > 1 from any non-monomorphic state or any monomorphic state ω∗j
with βj ≤ 1. Due to Assumptions B1 and B2 there is also positive probability that
only designers with highest revenues receive revision opportunities (and do not change
design) until a state ω0 with Ni(ω0) = N , Ni(ω0) = M is reached. Now consider (iii)
βi = βj = 1. Recall from the proof of Lemma 1 that a cross-state will be reached with
positive probability (for unchanged designs). In such a state designers randomize such
that there is a positive probability path to a cross-state with βi > 1, and a subsequent
positive probability path to a state in Ai,β,f (due to randomizing traders). Finally
consider (iv) - βi, βj < 1. In such a state traders randomize and a cross-state will be
reached with positive probability. In a cross state designers randomize such that a
cross-state with βi > 1 is reached. As traders continue to randomize a state in Ai,βi,fi
can be reached.
Hence, in every absorbing set all traders are located at a platform i with βi > 1

while designers of the other platform randomize over S = B × F (i.e. unsuccessfully
innovate). As transition costs between any two absorbing sets are 1 (starting in a
state in Ai,β,f just one experiment by designer i is required to end up in any other
Ai0,β0,f 0) all absorbing states characterized in Lemma 11 are also stochastically stable.
This establishes Theorem 2 for boundedly rational designers.
We conclude that boundedly rational platform designers exhibit qualitatively the

same behavior as rational ones: Platform competition forces them to introduce only
non-market clearing platforms.
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B.2. Decreasing Returns to Scale. Consider the following example. Two iden-
tical sellers are producing with costs c(q) = 1

2
q2 for q units of a commodity. For given

prices (pi) and fees (fi) at a platform i, their profit is πm,i(q, pi) = (1−fi)piq− 1
2
q2 and

maximization leads to the supply function s(pi) = (1− fi)pi. Two identical buyers,
- each with income of one unit - consume q units of the commodity traded at the
platforms and x units of a second commodity which price is normalized to 1. The
buyer’s utility is given by πn(q, x) = 2

√
q + x and solving for the optimal consump-

tion bundle for a given price at the respective platform pi, yields the buyer’s demand
function d(pi) = 1/p2i . Equating demand and supply gives the market clearing price
at platform i in state ω p∗i (ω) = ri(ω)

1/3(1− fi)−1/3 (with ri(ω) = |Ni(ω)|
|Mi(ω)|). Traders’

and designers’ profits depend on state and design and are calculated the same way
as before. For our purposes it suffices to note that sellers are not rationed whenever
βi ≤ 1 and their corresponding profit πm,i(Mi(ω), Ni(ω), si) =

1
2
(1 − fi)4/3β2i r

2/3
i is

increasing in βi and decreasing in fi. Analogously, sellers are rationed for βi > 1
and profits amount to πm,i(Mi(ω), Ni(ω), si) = (1− fi)4/3 1βi r

2/3
i (1− 1

2β3i
) which is also

monotonically decreasing in fi but reaches a (global) maximum at βi = 21/3.20

Full coordination on any platform will be a singleton-absorbing set (both types of
traders get strictly positive profits on any active platform). In fact, it is easy to see -
as in the proof of Lemma 1 - that these states are the only absorbing sets. Moreover,
it can be shown that these monomorphic states are also stochastically stable for a
wide range of design configurations. Note that not only the support of the stochasti-
cally stable distribution μ∗, but also its values for the different (monomorphic) states
matter for the designers’ profits. Hence, this setting can not be analyzed with the
tools discussed before. To obtain μ∗ in this example, we have to make use of Lemma
3.1 from Freidlin and Wentzell ([17])21. They derive the limit invariant distribution
μ∗ from an analysis of graphs in the state space Ω that are induced by the stationary
Markov-process P as follows. Fix an ω ∈ Ω. An ω− tree T is a spanning tree in Ω
such that for every vertex ω0 6= ω there exists a unique directed path from ω0 to ω. Let
Tω be the set of all ω− trees and define qω ≡

P
T∈Tω Π(ω0,ω00)∈TPω0,ω00 (i.e. qω is the

product of all transition probabilities on a given ω−tree summed over all ω−trees).
Then Lemma 3.1 of Freidlin and Wentzell [17] states that μ∗(ω) = qωP

ω∈Ω qω
. In the

limit of small mutation probability (² → 0) μ∗(ω) is determined by those ω−trees
that contain the smallest possible number of mutations necessary to form a spanning
tree in Ω. Hence, we will restrict ourselves to those trees.
For expositional ease we further specify the learning model and substitute As-

sumptions B1 and B2 by

Assumption D: In every round any seller m ∈ M is allowed to revise his location
decision with probability ρS ∈ (0, 1) while every buyer is allowed to revise with
probability ρB ∈ (0, 1).

20We assume for simplicity from now on that δ is such that 21/3 ∈ B.
21For a detailed explanation see Kandori et al. [22] or Young [36].
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Then a least mutation tree in Tω∗i has edges as depicted in the following table.

ω0 Pω0,ω∗i
(0,0) ²2P(1,1),ω∗i
(0,1) ²(1− ρB)P(1,1),ω∗i
(0,2) ²ρS
(1,0) ²(1− ρS)P(1,1),ω∗i
(1,1) P(1,1),ω∗i
(1,2) ρS
(2,0) ²ρB
(2,1) ρB

The respective table for ω∗j can be derived by a permutation of indices B and S.

Hence,
μ∗(ω∗j )

μ∗(ω∗i )
= ρ2Bρ

2
S(1 − ρB)(1 − ρS)

³
P(1,1),ω∗j

´4
/ρ2Bρ

2
S(1 − ρB)(1 − ρS)

¡
P(1,1),ω∗i

¢4
.

Note that this expression is continuous in ρS and ρB. This leads to the following
useful result (as sellers and buyers are identical profits only depend on the number of
sellers and buyers at a platform).

Lemma 12. Suppose πm,i(1, 1, si) > πm,j(1, 1, sj). Then for every ² > 0 there is a
ρS < 1 such that μ∗(ω∗j ) < ² for all ρS > ρS.

Proof. First recall that the monomorphic states are the only absorbing sets.
Moreover, it is easy to see that ω∗i is the only stochastically stable state if and
only if πm,i(1, 1, si) > πm,j(1, 1, sj) and πn,i(1, 1, si) > πn,j(1, 1, sj) (as it then needs
more than 2 mistakes to get from ω∗i to ω∗j ). If πm,i(1, 1, si) > πm,j(1, 1, sj) and
πn,i(1, 1, si) = πn,j(1, 1, sj), P(1,1),ω∗i = ρS(1− ρB)ρB +

1
2
ρB(1− ρS)ρS +

1
2
ρBρS while

P(1,1),ω∗j =
1
2
ρB(1 − ρS)ρS. Hence, P(1,1),ω∗j /P(1,1),ω∗i approaches zero if ρS → 1 such

that limρS→1 μ
∗(ω∗j ) = 0.

If πm,i(1, 1, si) > πm,j(1, 1, sj) and πn,i(1, 1, si) < πn,j(1, 1, sj), P(1,1),ω∗i = ρS(1 −
ρB)ρB while P(1,1),ω∗j = ρB(1− ρS)ρS. Hence, P(1,1),ω∗j /P(1,1),ω∗i again approaches zero
if ρS → 1 such that limρS→1 μ

∗(ω∗j ) = 0.
Intuitively, if sellers learn much faster then buyers, only the platform that offers

higher revenues to sellers will survive with a positive probability if both platforms
are active . This induces the following strict Nash-Equilibrium.

Proposition 13. There exists a ρS < 1 such that for all ρS > ρS it holds: The
combination of platforms (s∗i , s

∗
j) with f

∗
i = f

∗
j = fmin and β∗i = β∗i = 2

1/3 is a strict
Nash equilibrium.

Proof. As seller’s profits decrease in fi and reach their global maximum in
β = 21/3 it is clear that πm,i(1, 1, si) < πm,i(1, 1, s

∗
i ) for any si 6= s∗i . But then Lemma

12 indicates that for any ² > 0 there is a ρS such that μ∗(ω∗i , s
0
i, s

∗
j) < ² for all ρS > ρS.

Hence, if ² is chosen small enough, it holds for all ρS > ρS that
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πD,i(s
0
i, s

∗
j) < πD,i(s

∗
i , s

∗
j). (1)

In this case, (s∗i , s
∗
j) is a strict Nash equilibrium.

In general, if ρS is sufficiently large, it can be shown that βi ≤ 1 is not chosen
by any designer in any pure strategy equilibrium. Moreover, in any mixed strategy
equilibrium (σ∗1,σ

∗
2) there is a least one designer i where si ∈ C(σ∗i ) implies that

βi > 1.22

The previous proposition shows that also for decreasing returns to scale com-
petition between market designers might lead to the design of non-market clearing
institutions. This result, however, is not independent of the details of the learning
model and the demand and supply conditions.

22A proof of these claims and more detailed exposition of the material discussed in the Appendix
is available on request.


