University Classes and Student Achievement

ZEW Workshop on Education and Training Mannheim, 18-19 March 2005

Work in progress
Pedro Martins
Queen Mary, University of London; IZA
p.martins@qmul.ac.uk

Ian Walker
University of Warwick; IFS; IZA
i.walker@warwick.ac.uk

Motivation:

-understanding the (higher) education production function
-focus on classes (small group teaching): assumed important but little evidence
-analysis of various components of classes (attendance, size - formal and effective -, peers, and TA's)
-more resources in UK HE: how to spend fees income?
-context of increased (international) competition in higher education (Bologna process): quality will matter more

Related Literature:

-Attendance: Romer (JEP, 1993)
-Class Size: Krueger (QJE, 1999), Lazear (QJE, 2001), Hanushek (EJ, 2003)
-Peers: Sacerdote (QJE, 2001), Hanushek et al (JAppEctrics, 2003), Arcidiacono et al (mimeo, 2004), Vigdor and Nechyba (mimeo, 2004), Burke and Sass (mimeo, 2004)
-Teachers: Rivkin et al (Ectrica, 2005)

Methodology:

-use of longitudinal administrative data from Economics
Department at the University of Warwick, UK
-exploit random allocation of students to classes (done alphabetically, based on surname)
-use attendance records from class tutors (no recall bias)
-exploit multiple overlap of students, TA's and modules
(no random mobility assumptions, as in AKM literature)

- approach easily replicable in other departments/faculties

Some terminology/Warwick background:

-class: group of 5 to 25 students; meet typically once a week with a TA (typically a PhD student); exercises, presentations (175)
-module: e.g. Microeconomics 2, Math, IO, etc (17)
-course: Economics (and variants); modules also attended by students from other departments (but we don't have their grades)

Data:

-three years (2001/02, ..., 2003/04) - may be extended -first and second year (Economics) students
$-1,700$ student-year-module observations (650 students)
-avg. grade (our dependent variable) $=63 \%(s d=13 \%)$
-avg. size =13 (sd=5)
-avg. attendance rate $=80 \%$ (sd=12\%)
-attendance and peer characteristics based on Economics students; size info based on all students
-peer characteristics are avg of results in $1^{\text {st }}$ year (only for $2^{\text {nd }}$ year students); no data yet but also little heterogeneity in A-levels (equivalent to US SAT's)

Data:

Figure 1 - Cohorts/Academic Years Included in Sample Used

Table 1a - Descriptive Statistics, Student-Level Data

Variable	Obs	Mean	St. Dev.	Min	Max
Grade	1,694	63.45	13.11	0	97
Academic Year 200 1/02	1,694	0.147	0.354	0	1
Academic Year 2002/03	1,694	0.203	0.402	0	1
Academic Year 2003/04	1,694	0.650	0.477	0	1
1st year	1,694	0.628	0.484	0	1
2nd year	1,694	0.358	0.480	0	1
3rd year	1,694	0.014	0.118	0	1
World Economy (code=104)	1,694	0.057	0.232	0	1
Economics 1 (107)	1,694	0.038	0.191	0	1
Macroeconomics 1 (108)	1,694	0.057	0.231	0	1
Microeconomics 1 (109)	1,694	0.123	0.328	0	1
Industrial Economy (112)	1,694	0.021	0.144	0	1
Mathematics (119)	1,694	0.017	0.130	0	1
Mathematical Techniques A (121)	1,694	0.016	0.125	0	1
Statistical Techniques A (122)	1,694	0.011	0.103	0	1
Mathematical Techniques B (124)	1,694	0.088	0.283	0	1
Statistical Techniques B (125)	1,694	0.090	0.286	0	1
Computing and Data Analysis (125)	1,694	0.110	0.313	0	1
Macroeconomics 2 (201)	1,694	0.084	0.278	0	1
Microeconomics 2 (202)	1,694	0.136	0.343	0	1
Statistics and Econometrics (203)	1,694	0.038	0.192	0	1
Economics 2 (204)	1,694	0.004	0.064	0	1
Mathematical Economics (220)	1,694	0.035	0.183	0	1
Econometrics (226)	1,694	0.075	0.263	0	1
Attendance	1,694	7.361	3.833	0	20
Absence	1,694	1.939	2.292	0	18
Attendance (\% of total classes)	1,694	0.795	0.220	0	1
Overseas (non UK) Student	1,694	0.285	0.451	0	1
Class Size	1,507	12.891	4.648	2	38
Effective Class Size	1,498	8.306	2.885	1.33	16.42

"Grade Equation" Specifications:

$$
\begin{equation*}
y_{i t m a}=\beta_{1} \text { attitm }_{i t}+\beta_{2} \text { size }_{i t m}+\beta_{3} \text { peers }_{i t m}+\alpha_{t}+\alpha_{a}+\alpha_{m}+\alpha_{i}+\varepsilon_{i t m a} \tag{1}
\end{equation*}
$$

(2) $\quad y_{i t m a}=\beta_{1}$ attitm $+\beta_{2}$ size $_{i t m}+\beta_{3}$ peers $_{i t m}+\alpha_{\text {class }}+\alpha_{i}+\varepsilon_{i t m a}$
$Y=$ grade; Subscripts: $i($ student), m (module), a (TA), t (academic year); class

Allow for correlation between attendance and student observed and unobserved characteristics; between size and module (endogenously determined); between peers and other characteristics (in case peers not completely random); etc

Results (1): Attendance

Positive and significant returns without student effects, but...
Insignificant returns with student effects:
-not driven by different number of classes per module (same result for \% attendance or controlling for module)
-try instruments based on class meeting hours: significant non-linear effect of instruments (prime-time: 12-4pm), but still insignificant returns to attendance
-little variability in attendance? (high) average attendance is already optimal (random variation around that should have no impact)?

Figure 2 - Attendance and Grades

Results (1): Attendance

Table 2a - Returns to Attendance, Different Specifications

	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Attendance	0.57	1.252	0.961	1.509	1.801	-0.066	0.059	-0.119
	[0.092]**	[0.108]**	[0.099]**	[0.126]**	[0.146]**	[0.089]	[0.156]	[0.193]
Observations	1694	1694	1694	1694	1694	1694	1694	1694
R-squared	0.02	0.21	0.2	0.24	0.32	0.57	0.71	0.74
Fixed effects:								
Academic year	\mathbf{x}			x			x	
Tutor		x		x			x	
Module			x	x			X	
Class					x			x
Student						x	x	X

Notes:
Standard errors in brackets

* significant at 5\%; ** significant at 1%

Results (2): Class Size

Variability driven by:
-class type (larger when "more solving and less discussion" and when "expect lower attendance")
-but also from supply constraints and students timetable clashes

Positive effects at first - possibly consistent with Lazear's endogenous class size model; -once controls for module included, effects disappear -eventually negative returns (but still insignificant)

Broadly similar results for effective class size (taking into account attendance rates; strongly correlated)

Results (2): Class Size

Table 3a - Returns to Class Size, Different Specifications

	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Class Size	0.272	0.285	0.14	0.16		-0.048	-0.056	
	[0.073]**	[0.092]**	[0.091]	[0.097]		[0.071]	[0.091]	
Observations	1507	1507	1507	1507		1507	1507	
R-squared	0.01	0.1	0.12	0.14		0.62	0.72	
Fixed effects:								
Academic year	x			x			x	
Tutor		x		x			x	
Module			x	\mathbf{x}			\mathbf{x}	
Class					x			x
Student						x	x	X

Notes:
Standard errors in brackets

* significant at 5%; ** significant at 1%

Results (3): Peers effects

Analysis restricted to $2^{\text {nd }}$ year students
Measure of peer quality: average of $1^{\text {st }}$ year results (in modules available) of class colleagues (from economics)

Strong positive own correlation but insignificant peer effects (means and standard deviations)
(Endogenous peer effects very significant though but difficult to interpret)
Similar results when all variables considered simultaneously
No impact of presence of non-UK students in class (not even when splitting the sample into UK and non-UK students)

Figure 5 - Own current grade and colleagues lagged g rades

Results (3): Peer Effects

Table 5a-Exogenous Peer Effects, Different Specifications (2nd year students only)

	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Own grade (1st year)	0.705	0.709	0.709	0.703	0.604			
	[0.046]**	[0.044]**	[0.044]**	[0.045]**	[0.085]**			
Mean 1st-year	0.033	0.06	0.059	0.013	-0.7	0.092	0.007	0.577
classmates' grade	[0.092]	[0.097]	[0.090]	[0.107]	[0.531]	[0.111]	[0.149]	[1.540]
StDev 1st-year	-0.145	-0.076	-0.031	-0.065	-1.156	-0.113	0.019	0.853
classmates' grade	[0.133]	[0.145]	[0.138]	[0.146]	[0.719]	[0.166]	[0.190]	[0.570]
Observations	441	441	441	441	441	441	441	441
R-squared	0.4	0.47	0.46	0.47	0.51	0.79	0.81	0.85
Fixed effects:								
Academic year	x			x			x	
Tutor		x		x			x	
Module			x	\mathbf{x}			X	
Class					x			\mathbf{x}
Student						X	X	X

Notes:

Standard errors in brackets

* significant at 5%; ** significant at 1%

Results (4): Attendance, Size and Peers

Table 5b - Attendance, Size and Peer Effects, Different Specifications (2nd year students only)

	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Attendance	$\begin{gathered} 0.36 \\ {[0.169]^{*}} \end{gathered}$	$\begin{gathered} 0.441 \\ {[0.214]^{*}} \end{gathered}$	$\begin{gathered} 0.486 \\ {[0.151]^{* *}} \end{gathered}$	$\begin{gathered} 0.413 \\ {[0.223]} \end{gathered}$		$\begin{gathered} \hline-0.165 \\ {[0.216]} \end{gathered}$	$\begin{gathered} \hline-0.507 \\ {[0.326]} \end{gathered}$	
Class Size	$\begin{gathered} 0.305 \\ {[0.081]^{\star \star}} \end{gathered}$	$\begin{gathered} -0.029 \\ {[0.117]} \end{gathered}$	$\begin{gathered} -0.052 \\ {[0.114]} \end{gathered}$	$\begin{gathered} -0.026 \\ {[0.117]} \end{gathered}$		$\begin{gathered} 0.071 \\ {[0.106]} \end{gathered}$	$\begin{gathered} -0.049 \\ {[0.135]} \end{gathered}$	
Own grade (1st year)	$\begin{gathered} 0.672 \\ {[0.047]^{\star \star}} \end{gathered}$	$\begin{gathered} 0.67 \\ {[0.048]^{\star \star}} \end{gathered}$	$\begin{gathered} 0.67 \\ {[0.045]^{\star \star}} \end{gathered}$	$\begin{gathered} 0.67 \\ {[0.048]^{\star *}} \end{gathered}$				
Mean 1st-year classmates' grade	$\begin{gathered} 0.028 \\ {[0.094]} \end{gathered}$	$\begin{gathered} 0.063 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 0.092 \\ {[0.090]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.109]} \end{gathered}$		$\begin{gathered} 0.04 \\ {[0.117]} \end{gathered}$	$\begin{gathered} -0.02 \\ {[0.157]} \end{gathered}$	
St Dev 1st-year	-0.191	-0.037	-0.045	-0.035		-0.133	-0.022	
classmates' grade	[0.132]	[0.146]	[0.137]	[0.146]		[0.167]	[0.196]	
Observations	441	441	441	441		441	441	
R-squared	0.42	0.48	0.47	0.48		0.79	0.81	
Fixed effects:								
Academic year	\mathbf{x}			x			x	
Tutor		\mathbf{x}		x			x	
Module			x	\mathbf{x}			\mathbf{x}	
Class					\mathbf{x}			\mathbf{x}
Student						X	\mathbf{x}	X

Notes: Standard errors in brackets; * significant at 5\%; ** significant at 1\%

Results (4): TA's effect

Considering specification including attendance and size (with or without student effects): 28 tutors (18 have their effect identified)
-large dispersion of effects: F statistic that all effects equal easily rejected
-inclusion of student effects: F no longer rejected
-some evidence of poor correlation between TA effects and student evaluations of TA's

Results (5): Teaching Assistants

Figure 5 - Teaching Assistant Fixed Effects
(Point Estimates)

(Preliminary) Conclusions:

-returns to attendance disappear with student fixed effects: attendance doesn't matter?
-alternative possibilities: students choose optimally (avg. attendance rate=80\%); attendance differences endogenous; too little variability left in data
-no significant class size effects: scope for increasing class size? (avg. class size=13)
-but negative coefficients with student effects..

(Preliminary) Conclusions:

-no evidence of peer effects: consistent with other results about low spillovers in mathematical courses;
-alternative possibilities: homogenous groups; measurement error
-strong effect played by students' lagged results (and student effects in general): evidence of considerable unobserved heterogeneity, even within single department
-large dispersion of TA effects, but insignificant differences between TA's when student effects included (and low correlation with student evaluations)

