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Abstract:

We quantitatively analyze the way inflation reduces the inequality of the income distribution in
the U.S. economy. The main mechanism emphasized in this paper is the “bracket creep” effect
according to which inflation pushes income into higher tax brackets. Governments adjust the
nominal income tax brackets slowly and incompletely due to the rise in prices. In the U.S.
postwar history, this typically happens less often than once every other tax year. We develop
a general equilibrium monetary model with income heterogeneity. In line with our time series
evidence, it is rather the frequency of income tax schedule adjustments than the overall level of
inflation that has a perceptible impact on the distribution of income. In terms of size, the effect
compares to the opposite effect on earnings inequality generated by the sharp decline in union
membership after the mid-1970s. We also find that a longer duration between two successive
adjustments of the tax schedule reduces employment, savings, and output significantly.



1 Introduction

The “bracket creep” describes a shift of personal income into a higher tax bracket when

taxable nominal income grows over time. Higher inflation possibly increases tax burdens

under the personal income tax. There are several avenues by which higher inflation could

affect tax liabilities. Most personal income tax systems are structured with progressive

marginal tax rates. As a result, taxpayers who receive only nominal increases in wages to

offset higher inflation still tend to be pushed into higher tax brackets because of progressive

marginal tax rates. This effect is considered to be particularly severe (“the cruelest tax”)

in times of high inflation as was seen during the last half of the 1970s when U.S. inflation

rates averaged 8.9 percent annually (Blinder and Esaki, 1978). Some personal income taxes

are designed to adjust the brackets to inflation, which eliminates “bracket creep” and the

inflationary increase in tax liabilities. Some countries do not build it in to the tax but make

more or less frequent adjustments of the schedule, instead. To combat“bracket creep”in the

U.S., the Reagan Administration implemented an indexation of the personal exemptions

and the tax brackets based on a cost-of-living index derived from the Consumer Price

Index for All Urban Consumers (CPI-U). These provisions were actually enacted in 1981

as part of the Economic Recovery Tax Act (ERTA), but delayed in their implementation

and did not become effective until 1985; see Altig and Carlstrom (1991, 1993), Auerbach

and Feenberg (2000). The focus of the existing literature is on the distortionary effects

the “bracket creep” has on aggregate income and labor supply (Altig and Carlstrom 1991,

1993, Saez 2003, Immervoll 2005). In inflationary environments, with unchanged or loosely

adjusted rate schedules and brackets, personal income tax collections tend to rise. This

raises the claim that “bracket creep” is strategically used by some governments to maintain

tax revenues. A loose or strategically implemented “pure one-year-lag” index system can

be shown to cause taxable income to be overstated by the current rate of inflation (Altig

and Carlstrom 1991, 1993). Here, we do not consider “bracket creep” as a central revenue

source of government deficit reduction efforts.

The adjustment of marginal tax rates with regard to inflation is also very likely to have an

important effect on the distribution of income. First, the net income of the income-poor

households increases other things being equal. And second, the incentives to supply labor

increases for the low-productivity households as the net wage rate increases.1 The purpose

1With the help of U.S. panel data on individual tax returns, Saez (2003) uses the “bracket creep” as
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of this paper is to assess the impact of the “bracket creep,” or rather its attenuation, on the

distribution of income both empirically and in a dynamic stochastic general equilibrium

(DSGE) model for the U.S. economy.

There is a well-known early strand of literature representing a broad empirical research

effort aimed to contribute information on the (re-)distributional effects of inflation on the

U.S. income and/or wealth distribution. It includes the works of Bach and Ando (1957),

Budd and Seiders (1971), Bach and Stephenson (1974), and Wolff (1979). With some

exceptions2 this literature either (i) underlies a detailed disaggregate definition of wealth

and discriminates a set of different income types (notably before taxes) and portfolios of

different demographic groups of households, business and governmental sectors, etc. or (ii)

investigates the effects of inflation determined by market forces and by public and private

transfer policies, before any subsequent distribution through personal income tax. The

traditional empirical model, investigating the relationship between the Gini coefficient and

the inflation rate, is the one by Schultz (1969). Blinder and Esaki (1978) were the first to

empirically analyze the effects of unemployment and inflation on quintile shares of income

in the U.S. relying on linear regressions. Their specification has been advanced by Blank

and Blinder (1985) by including autoregressive terms and more recently by Jäntti (1994)

applying generalized least squares (GLS) estimation. Two recent studies examining the

effects of “bracket creep” on income are Saez (2003) and Immervoll (2005) for the U.S. and

Germany, the Netherlands, and the U.K., respectively. Both focus on effects on labor supply

and overall income, and abstract from investigating distributional effects. Contributions

that consider inflation as a central explanatory of inequality in cross-sectional studies are

Romer and Romer (1998) and Galli and van der Hoeven (2001).

This paper is the first to quantitatively assess“bracket creep”effects on the U.S. distribution

of personal income in a historical perspective. Our first method of choice to determine the

correlation structure between inflation and inequality is time series analysis techniques,

source of tax variation in order to construct instrumental variable estimates of the sensitivity of income to

changes in tax rates. He estimates a labor supply elasticity of taxable income of around 0.4.
2Bach and Ando (1957) and Bach and Stephenson (1974) see taxpayers as the main beneficiaries of

inflation if it is assumed that debt will be paid off by collections from taxpayers and therefore the latter

can be seen as “indirect debtors.”They argue that if debt in form of governmental interest charges is repaid

by taxation, inflation redistributes real purchasing power in favor of the higher income groups since these

were slightly heavier taxpayers than federal bondholders in the early and mid 1950s and early 1970s.
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in particular, bivariate measures in the frequency domain.3 We apply the latter to the

most recently available time series on income inequality (Kopczuk, Saez, and Song, 2007)

and inflation in the U.S. for a longer sample period than has previously been available.

Overall, the strategy of the exercise is to take a stand on how the effective U.S. tax system

was affected during the total postwar period and then to investigate the consequences of

infrequent indexation relative to the sort of system that has been in place since the mid

1980s. The empirical analysis finds evidence for a countercyclical relationship between the

inflation rate as measured by the CPI-U and inequality as measured by the Gini coefficient.

The former leads the latter by at least one year. We also confirm the conjecture by Altig

and Carlstrom (1991, 1993) according to which the indexing scheme introduced by ERTA

bounded the problem but issues of inflation and tax-system interactions are far from moot

and being solved.

To assess whether the progressive bias of inflation is predominantly driven by the level and

persistence of positive inflation or rather by an infrequent adjustment of the tax schedule

requires to go beyond a descriptive time series analysis. We develop a monetary general

equilibrium model of progressive income taxation. In our DSGE model simulations, we

compare both high inflation environments (1970s) with moderate inflation environments

(rest of postwar U.S. history) and infrequent schedule adjustment regimes (before ERTA)

with less infrequent schedule adjustment regimes (after ERTA). While the individual agents

face idiosyncratic risk with regard to their productivity, there is no aggregate uncertainty in

the economy as the government adjusts its tax schedule in a deterministic way and money

grows at an exogenous and constant rate. In response to a higher inflation or a longer

duration of the “bracket creep,”individuals face higher income taxes, both on average and

marginally as the U.S. income tax is progressive. As a consequence, agents adjust their

labor supply and savings decisions. Surprisingly, agents do not change their behavior

significantly between periods. However, if we consider a tax policy regime that adjusts the

tax schedule for inflation more frequently, we find that agents increase both their labor

supply and savings markedly compared to a system with less frequent adjustments. We,

therefore, conclude that the inflation rate is a less important phenomenon for the effects

3These techniques are rather descriptive and as such imposing less assumptions than the more structural

specifications used in the existing literature. As they are computed for a continuous range of ordinary

frequency, bivariate spectral density estimates are particularly informative with regard to the lead-lag

relationship of income inequality and inflation.
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of the “bracket creep” compared to its duration, i.e., the length of the time period between

two successive income tax schedule adjustments for inflation.

The remainder of the paper is structured as follows. Section 2 presents empirical evidence

for U.S. time series. Section 3 introduces the overlapping-generations model with two

assets, money and equity. The model is calibrated with regard to the characteristics of

the U.S. economy in section 4. Our numerical results are presented in section 5. Section 6

concludes.

2 Empirical analysis

2.1 Data

Our data on aggregate income inequality is drawn from Gini coefficient series that were

most recently made available by Kopczuk et al. (2007). The series date back to the late

1930s. The period of observation we cover, therefore, is considerably longer than the one

of studies using annual data from the Current Population Surveys that became available

in the 1960s. The Gini coefficient series provided by Kopczuk et al. (2007) is based on

the large Social Security Administration (SSA) micro dataset. Besides the very long time

period covered, the authors emphasize the following key advantages relative to the data

that have been used in previous studies on inequality in the U.S.: The underlying SSA

data mostly represent a one percent sample of the total U.S. population. Additionally,

they are longitudinal as samples are selected based on the same Social Security Numbers

every year. Finally, they have only very little measurement error. A further fact that

makes the resultant Gini coefficient series particularly suited for our purposes is that it is

based on individual rather than family-level data, which is more adequate in the context

of income taxation. The series is available up to the year 2004.

For the inflation rate series, we rely on CPI-U based time series (base year is chained, 1982-

1984 = 100) provided in annual frequency by the Federal Reserve Bank of Minneapolis. In

total, our period of observation covers 57 years. It ranges from 1948 to 2004.
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2.2 Time series analysis

The study of our time series in the time and frequency domain requires stationary pro-

cesses. For the U.S. inflation series it has not yet been conclusively resolved whether it is

best treated as stationary or non-stationary. To survey the voluminous literature on this

subject is beyond the scope of this paper. Note, however, in a recent and comprehensive

application of unit root testing Ng and Perron (2001) show their results to crucially depend

on the choice of test. Therefore, unreflective reliance on unit root tests seems hazardous

in the present context. Consequently, we adopt another approach in the spirit of Canova

(1998). We compare results with the known potential distortions induced by the detrend-

ing filter used (A’Hearn and Woitek, 2001, p. 327-328), and compare across filters to judge

robustness. For the inflation rate series, we also compare it to findings treating the raw

series as stationary. The filters we consider are the widely used highpass Hodrick-Prescott

filter with a smoothing weight λ for annual series equal to 100 (HP), the log-difference

filter (logD) that would be ideal for a difference stationary process, and the recently pro-

posed bandpass Baxter-King filter (BK) and Christiano-Fitzgerald filter (CF) both with

a cut-off frequency of 15 years; see Hodrick and Prescott (1997), Baxter and King (1999),

and Christiano and Fitzgerald (2003). Additionally, we use two recent modifications of the

HP and BK filter suggested by Ravn and Uhlig (2002) and A’Hearn and Woitek (2001),

respectively. The modified HP filter (MHP) sets the smoothing parameter λ = 6.25 for

annual series. The modified BK filter (MBK) takes care of the undesirable sidelobes in the

gain function by so-called Lanczos’s r-factors. Overall we rely on six different filter devices,

one more than in a similar recent exercise by Wälde and Woitek (2004).

Figure 1 displays significant correlation coefficients between the inflation rate and Gini coef-

ficient series for the total sample period, that is from 1948 to 2004. Correlation coefficients

and corresponding t- and p-values are obtained by regressing centered cyclical components

of inflation rate data on centered cyclical components of the Gini coefficient series. The

reported results are based on heteroscedasticity and q-th order autocorrelation consistent

variance-covariance matrices with declining weights of autocovariances (Newey-West esti-

mators). Lag length q has been set to q = floor
[
4 (T/100)2/9

]
following the suggestion in

Newey and West (1987). Figure 1 gives a visual summary of results by plotting a dot cor-

responding to the estimated correlation coefficient for inflation rate leads (Gini coefficient

lags) of two years and one year (starting from the left), for contemporaneous correlations,
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Figure 1: Significant correlations between Gini coefficient and inflation rate (1948-2004)

and for inflation rate lags (Gini coefficient leads) for one and two years. Only coefficients

significant at a 10% or lower level are displayed. They are shown as distributions for com-

binations of series filtered by different filtering techniques. As we take six different filters

into account − and in the case of the inflation rate series also the raw series −, there is a

maximum of 7× 6 = 42 significant correlation coefficients at each considered lag.

We find the most significant correlations at the two years lags and leads, respectively.

For 30 combinations of differently filtered series, all correlation coefficients at the two years

inflation rate lead (lag) are negative (positive). This suggests a countercyclical relationship

between inflation and income inequality at the corresponding frequency. Therefore, the

effect that there are four positive contemporaneous estimates is a result one should expect:

when two time series of the same length are countercyclical at a lag of two years, they need

to be procyclical if one series is lagged by half the length of a cycle. Note that the finding

of five negative correlations at a lead of one year can be interpreted as an indication for a

more complex cyclical structure shared by the two underlying series. It is also noteworthy

that the mean frequency of tax bracket adjustment in the postwar U.S. is 2.11 years (see

Table 7 in the Appendix). Overall, we estimate in about one fifth of considered possible

correlations a significant coefficient.

For the pre-1985 period, there is evidence for a significant correlation between inflation
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Figure 2: Significant correlations between Gini and inflation (1948-1984 and 1985-2004)

and income inequality in less than five percent of analyzed cases (left schedule of Figure 2).

Both findings for the total and pre-1985 period somehow contrast with the ones of studies

from the 1990s that find current inflation to be of progressive nature in the postwar U.S.

(Bulir and Gulde, 1995 and Jäntti, 1994).4

For the post-1984 period, clearly significant results are found in nearly half of the considered

correlations both for one year and two years lags (right schedule of Figure 2). They are the

ones that are most in favor of an adjustment effect: Although, the U.S. income tax system

has been effectively indexed for inflation as of 1985, a perfect indexation is extremely hard

to realize in practice. The fact that it takes time to assess the exact inflation rate and to

adjust tax-band limits and other nominally defined parameters of the tax code accordingly

can be interpreted as responsible for the significant correlations between inflation and

income inequality at first and second annual lag. It might be also due to a peculiarity

of the cost-of-living index derived from CPI-U that is used to adjust bracket limits and

personal exemption levels under ERTA. In this context Altig and Carlstrom (1991) note

4Jäntti (1994, p. 373) notes that the ERTA of 1981 is among the tax policies that most likely have

affected the U.S. income distribution. To control for these changes in policy his estimates include a dummy

taking on a value of one from 1981 onward. However, given that the tax bracket indexation for inflation

represents the crucial change introduced by the ERTA, a later dated structural break should have been

used as indexing was delayed until 1985.
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that ERTA defined the cost-of-living index as the average CPI-U for the 12-month period

ending September 30 of the year prior to the tax year, divided by the average CPI-U for

the analogous period. Thus, because tax years and “index years” are by definition not

synchronized, ERTA mandates that inflation adjustments be made with an approximate

lag of one year. The displacement of index inflation rate and actual inflation rate is not

exactly one year as the former rate is constructed using the average of the CPI-U over the

12-month period ending 15 months (16 months since 1986) prior to the relevant tax year.

Positive as well as negative correlations at a zero lag can be seen as suggesting a partial

offsetting of a progressive tax effect of inflation induced by schedule adjustment measures.

We carefully interpret these findings from time domain techniques as lending support to

a transitorily inequality reducing impact of inflation that leads aggregate measures of in-

equality by at least one to two periods (tax years).

An alternative approach that characterizes the dynamics of multiple time series in an intu-

itive summary way, and is suited to describing and analyzing them at different frequencies

is spectral analysis. Any n-dimensional stationary process Xt has a spectral representation

at frequencies ω ∈ [−π, π] in the form of a spectral density matrix F (ω) . It is given by the

Fourier transform of the covariance function γjk (τ), τ = 0,±1,±2, ..., for all j = 1, ..., n;

k = 1, ..., n of the process

F (ω) =
1

2π

+∞∑
τ=−∞

Γ (τ) e−iωτ , − π ≤ ω ≤ π, (1)

with

Γ (ω) =




γ11 (ω) · · · γ1n (ω)
...

. . .
...

γn1 (ω) · · · γnn (ω)


 and F (ω) =




f11 (ω) · · · f1n (ω)
...

. . .
...

fn1 (ω) · · · fnn (ω)


 .

Because F (ω) is an even function, it is sufficient to examine it in the interval [0, π]. The

diagonal elements f11 (ω) , ..., fnn (ω) are the real-valued autospectra or power spectra. The

off-diagonal elements represent cross spectra fjk (ω) = cjk (ω)−iqjk (ω), consisting of cjk (ω)

cospectra and qjk (ω) quadrature spectra.

Implementing (1) is problematic, for it requires autocovariances and covariances from −∞
to +∞. The approach taken here follows A’Hearn and Woitek (2001). It consists in
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estimating bivariate VAR models of order p,5 the lag length being determined by Akaike’s

information criterion, and letting the model parameters determine the covariance function.

This allows estimation of the bivariate spectrum as follows.

F (ω) =
1

2π
A (ω)−1

∑
A (ω)−∗ . (2)

∑
denotes the error variance-covariance matrix. A (ω) is the Fourier transform of the

matrix lag polynomial A (L) = I − A1L − . . . A1L
p, where L is the backshift operator.

The superscript “*” denotes complex conjugate transpose. As noted above, the cross-

spectra are complex valued functions in ω, but simple manipulations yield the more readily

interpretable, real measures: phase shift ps (ω) and squared coherency sc (ω).

ps (ω) = arctan
−qjk (ω)

cjk (ω)
, (3)

sc (ω) = κ2
jk (ω) =

|fjk (ω)|2
fjj (ω) fkk (ω)

. (4)

The phase shift (ps) measures the phase lead (ps > 0) or lag (ps < 0) of a series j over the

series k at a certain frequency ω. The respective ps measure is computed at the maximum

of squared coherency sc, i.e. at that frequency ω, where the cyclic components contained

in the two series at stake show the highest degree of linear relationship. The sc measure

takes on values between 0 and 1. Precisely, it indicates the proportion of the variance of

the component of frequency ω of either series that can be explained by its linear regression

on the other series; see Koopmans (1995, p. 142). Both spectral parameters ps and sc can

be calculated and displayed for a range of different frequencies. This gives us the phase

and coherence spectral densities.

Figure 3 illustrates plots of the key bivariate measures coherence and phase over the total

period for a sample case. It displays the results for the sample case, where the inflation

rate has been filtered using a standard HP filter, the Gini coefficient using the CF filter,

respectively. Instead of plotting the phase in the interval [−π, π], we follow the suggestion

in Priestly (1981, p. 709) and plot it in the intervals [−3π, π], [−π, π], and [π, 3π], in order

to avoid discontinuities due to the fact that the phase is only defined mod 2π. Figure 4 is

the corresponding one for the two considered subperiods.

5We set the maximum order we allow for to pmax = 3. Our results are not sensitive to this choice.
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Figure 3: Sample spectra: Gini coefficient and inflation rate (1948-2004)

As can be seen from Table 1 and the sample case illustrated in Figure 3 and 4, the coherence

spectrum is characterized by two peaks, corresponding to periodicities contained in the Gini

coefficient series. One of these cyclic components lags the corresponding cycle contained

in the inflation rate series (π), the other one shows a contemporaneous coherency (implied

|ps| ≤ 1 year) with the period in the inflation series. For frequencies in-between these two

phase constellations the corresponding sc estimates still take on considerable values. In

our sample case illustration it equals about 10-28 percent (total period) and about 40-70

percent (pre-1985 period), respectively. Overall, the corresponding sc values range from

about ten to more than 90 percent, depending on observation period and filter. In less

than four percent of all considered cases a positive ps ≥ 1 is found (Table 1). We abstract

from these estimates in the following interpretation.

If we compare the different observation periods, we find that the average ps ≤ −1 at the

frequency corresponding to (a local) maximum of sc is −2.60 years (median: −2.65 years)

for the pre-1985 period, −1.71 years (median: −1.76 years) for the post-1984 period, and

−2.26 years (median: −2.42 years) for the total period. We can interpret the difference of

these ps values and the values for which −1 < ps < 1 as a measure for the duration of the

tax bracket adjustment process. In this interpretation, the mean duration decreased from

3.27 years (median: 3.34 years) for the pre-1985 period to 1.89 years (median: 1.91 years)

for the post-1984 period. For the total period it equals 3.02 years (median: 3.03 years).
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Figure 4: Sample spectra: Gini coefficient and inflation rate (1948-1984 and 1985-2004)

This suggests that the annual inflation indexation of the U.S. tax schedule as introduced

in 1985 offsets the redistributional effects of inflation with a lag of approximately one

and half to two years. According to Altig and Carlstrom (1991, 1993) this lag can be

attributed (at least, in parts) to an idiosyncratic definition of an “index year” as opposed

to a tax year introduced by the automatic U.S. tax code indexation in the mid-1980s. Altig

and Carlstrom label the U.S. system a “pure one-year-lag index system.” They even claim

that inflation indexation might be strategically used by governments to raise revenues and

reduce deficits (Altig and Carlstrom 1993).

The coherency between the inflation rate and the Gini coefficient series steadily falls over

this span as the measures take effect (right schedule of Figure 4). For the less frequent

tax bracket adjustments in the period from 1948 to 1984, distributional effects of inflation

continued for more than two and a half to about three years before being offset. In this

case sc takes on sizable values over this span that persist to the zero lag.
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Table 1: Bivariate spectral analysis:a Total period 1948-2004b

π

filter BK CF HP

None
sc:

ps:

0.42 0.15

−2.48 0.84

0.28 0.32†

−2.72 0.87†
0.30 0.28

−2.24 0.64

BK
sc:

ps:

0.49 0.16

−2.46 0.56

0.43 0.17

−2.48 0.64

0.44 0.17

−2.48 0.64

CF
sc:

ps:

0.33 0.26

−2.66 1.78

0.30 0.29

−2.62 0.83

0.30 0.30†

−2.60 0.83†

HP
sc:

ps:

0.35 0.25

−2.63 1.58

0.29 0.30†

−2.63 0.83†
0.34 0.13

−2.39 0.67

MHP
sc:

ps:

0.46 0.22

−2.40 0.58

0.29 0.35†

−2.53 0.70†
0.26 0.15

−2.26 0.65

logD
sc:

ps:

0.25 0.23

−1.23 0.79

0.20 0.24†

−1.40 0.75†
0.19 0.28†

−1.28 0.76†

MBK
sc:

ps:

0.49 0.19

−2.42 0.75

0.42 0.22

−2.42 0.64

0.43 0.21

−2.43 0.63

π

MHP logD MBK

None
sc:

ps:

0.32 0.38†

−1.97 0.64†
0.32 0.36†

−2.88 0.36†
0.40 0.18

−2.45 0.79

BK
sc:

ps:

0.44 0.23

−2.43 0.59

0.47 0.25

+2.15 0.41

0.47 0.19

−2.45 0.58

CF
sc:

ps:

0.35 0.32

−2.39 0.71

0.25 0.42†

+3.15 0.59†
0.33 0.27

−2.61 1.38

HP
sc:

ps:

0.30 0.39†

−2.03 0.62†
0.22 0.38†

+3.08 0.39†
0.36 0.27

−2.58 1.27

MHP
sc:

ps:

0.28 0.46†

−2.03 0.61†
0.20 0.45†

+2.66 0.38†
0.43 0.25

−2.40 0.59

logD
sc:

ps:

0.17 0.31†

−1.09 0.75†
0.28 0.51†

−1.63 0.32†
0.24 0.27†

−1.21 0.78†

MBK
sc:

ps:

0.44 0.27

−2.38 0.60

0.46 0.28

+2.13 0.42

0.46 0.22

−2.39 0.59
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Table 1 (continued): Bivariate spectral analysis: Pre-1985 period 1948-1984c

π

filter BK CF HP

None
sc:

ps:

0.74 –

−1.97 –

0.52 0.66†

−3.22 0.92†
0.44 0.47†

−2.51 0.69†

BK
sc:

ps:

0.85 0.41

−2.69 0.68

0.76 0.51

−2.65 0.70

0.77 0.49

−2.66 0.70

CF
sc:

ps:

0.82 0.46

−2.86 0.83

0.69 0.62

−2.82 0.80

0.70 0.63

−2.83 0.81

HP
sc:

ps:

0.81 0.46

−2.83 0.81

0.68 0.64

−2.83 0.79

0.55 0.53

−2.43 0.63

MHP
sc:

ps:

0.82 0.52

−2.65 0.68

0.71 0.67

−2.69 0.70

0.54 0.62†

−2.25 0.61†

logD
sc:

ps:

0.40 0.42†

−0.42 0.65†
0.26 0.50†

−2.19 0.67†
0.27 0.48†

−2.13 0.66†

MBK
sc:

ps:

0.81 0.45

−2.71 0.70

0.74 0.56

−2.60 0.69

0.74 0.55

−2.61 0.70

π

MHP logD MBK

None
sc:

ps:

0.52 0.58†

−2.40 0.64†
0.41 0.54†

−3.28 0.38†
0.74 0.47

−2.72 0.94

BK
sc:

ps:

0.81 0.45

−2.71 0.70

0.79 0.51

+1.97 0.45

0.84 0.42

−2.70 0.69

CF
sc:

ps:

0.79 0.61

−2.88 0.77

0.68 0.70†

+2.47 0.56†
0.80 0.47

−2.85 0.83

HP
sc:

ps:

0.59 0.62†

−2.41 0.61†
0.46 0.62†

+2.68 0.38†
0.79 0.47

−2.82 0.82

MHP
sc:

ps:

0.55 0.67†

−2.31 0.61†
0.40 0.69†

+2.37 0.38†
0.80 0.52

−2.65 0.69

logD
sc:

ps:

0.32 0.44†

−1.68 0.81†
0.32 0.52†

−2.81 0.47†
0.35 0.42†

−1.65 0.83†

MBK
sc:

ps:

0.79 0.50

−2.65 0.70

0.76 0.55

+1.95 0.46

0.82 0.47

−2.64 0.69
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Table 1 (continued): Bivariate spectral analysis: Post-1984 period 1985-2004d

π

filter BK CF HP

None
sc:

ps:

0.75 0.10

−2.13 −0.10

0.71 –

−1.54 –

0.67 0.33

−2.08 0.19

BK
sc:

ps:

0.93 0.55

−1.79 0.21

0.71 0.10

−1.60 0.18

0.86 0.36

−1.78 0.21

CF
sc:

ps:

0.50 0.13

−1.87 0.81

0.53 –

−1.28 –

0.60 –

−1.29 –

HP
sc:

ps:

0.93 0.42

−1.98 −0.17

0.67 0.04

−1.36 0.42

0.51 0.15

−1.41 0.45

MHP
sc:

ps:

0.90 0.43

−1.71 0.11

0.68† 0.07

−0.98† 0.30

0.60 0.42

−1.03 0.38

logD
sc:

ps:

0.81† 0.24

−0.69† 0.49

0.75† 0.26

−0.24† 0.55

0.63† 0.46

−0.02† 0.57

MBK
sc:

ps:

0.93 0.45

−1.77 0.16

0.81 0.10

−1.50 0.61

0.88 0.62

−1.89 0.43

π

MHP logD MBK

None
sc:

ps:

0.59 0.34

−2.05 0.18

0.66 0.65

−2.67 −0.07

0.77 0.13

−2.20 −0.10

BK
sc:

ps:

0.91 0.50

−1.82 0.14

0.81 0.41

−2.65 −0.13

0.92 0.56

−1.77 0.21

CF
sc:

ps:

0.43† –

−0.97† –

0.94 0.43

−2.78 −0.18

0.85 0.39

−2.33 −0.33

HP
sc:

ps:

0.37 0.15

−1.20 0.49

0.30 0.21

−4.69 −0.59

0.92 0.44

−1.96 −0.21

MHP
sc:

ps:

0.78 0.64

−1.64 0.33

0.66 0.62

−2.37 0.01

0.90 0.45

−1.69 0.09

logD
sc:

ps:

0.71 0.74†

−0.74 0.87†
0.61 0.84†

−1.56 0.35†
0.81† 0.27

−0.69† 0.54

MBK
sc:

ps:

0.91 0.48

−1.79 0.09

0.79 0.39

−2.64 −0.11

0.92 0.53

−1.75 0.16
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Note: aColumns: Gini coefficient series; † relative higher sc at |ps| ≤ 1;

b BK: 1951-2001, CF: 1950-2002, logD: 1951-2004

c BK: 1951-1984, CF: 1950-1984, logD: 1951-1984

d BK: 1985-2001, CF: 1985-2002, logD: 1985-2004

In combination with our findings from time domain techniques, we interpret the results

from frequency domain techniques as lending support to an inequality reducing impact

of inflation that last longer and represented a continuing effect over several years in the

period before 1985. After the inflation indexation of the U.S. tax schedule became effective

in 1985, there is still an impact from lagged inflation on income inequality; see, for example,

also Altig and Carlstrom (1991, 1993). However, for the post-1984 regime it is clearly of

transitory nature. While there are some indications for a redistributional effect from the

current level of inflation for the pre-1985 period, the tax schedule adjustment effect clearly

stands out for both sample periods.

Quantitatively assessing the distributional effects of changes of tax-band limits is a complex

task for it requires to consider adjustment-induced changes in the behavior of the private

sector. These changes can virtually not be controlled for in time series analysis or other

econometric models. A candidate model that is able to account for these changes is an

adequate DSGE model that is set up and simulated in the following.
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3 A monetary general equilibrium model with pro-

gressive income taxation

In this section, we develop a general equilibrium overlapping generations model with en-

dogenous equity and money distribution. Four sectors can be depicted: households, pro-

duction, the government, and the central bank. Households maximize discounted life-time

utility. Agents can save either with money or with capital. Individuals are heteroge-

neous with regard to their productivity and cannot insure against idiosyncratic income

risk. Firms maximize profits. Output is produced with the help of labor and capital. The

government provides unfunded public pensions which are financed by a progressive tax on

wage and capital income. The money growth rate is set by the central bank and seignorage

is collected by the government.

3.1 Households

Every year, a generation of equal measure is born. A subscript j of a variable denotes the

age of the generation. The total measure of all households is normalized to one.

Households live a maximum of T + TR years. Lifetime is stochastic and agents face a

probability sj of surviving up to age j conditional on surviving up to age j − 1. During

their first T years, agents supply labor l elastically. After T years, retirement is mandatory.

Agent i maximizes her life-time utility:

E0




T+T R∑
j=1

βj−1
(
Πj

h=1sh

)
u(ci

j,m
i
j, 1− lij),


 (5)

where β, ci
j, and mi

j denote the discount factor, consumption and real money balances of

agent i at age j, respectively. Instantaneous utility u(c,m, 1− l) is given by:

u(c,m, 1− l) = ln c + (1− γ) ln m + B ln(1− l). (6)

Workers are heterogeneous with regard to their labor earnings per working hour. The

worker’s labor productivity e(z, j) is stochastic and depends on his age j and an idiosyn-

cratic labor productivity shock z. We assume that the idiosyncratic part of productivity
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follows a first order finite state Markov chain with conditional transition probabilities given

by:

π(z′|z) = Pr{zt+1 = z′|zt = z}, (7)

where z, z′ ∈ E . Although the dynamics of productivity may be modeled slightly better

by a second order Markov chain (Shorrocks, 1976) the improvement in accuracy is rather

small and does not justify the considerable increase in the model’s complexity.

Furthermore, agents are born without wealth, a1 = 0, and cannot borrow, aj ≥ 0 for all j.

Wealth a is composed of real money m and capital k. Capital or, equally, equity k earns a

real interest rate r. We further assume a short-sale constraint k ≥ 0. Parents do not leave

altruistic bequests to their children. All accidental bequests are confiscated by the state.

Agent i receives income from capital ki and labor li. The budget constraint of the working

agent at age j = 1, . . . , T in period t is given by

ai
j+1,t+1 = ki

j+1,t+1 +mi
j+1,t+1 = (1+ rt)k

i
jt +

mi
jt

1 + πt

+wte(z, j)l
i
jt + trt−

τt(Pty
i
jt)

Pt

+ ci
jt, (8)

where wt and πt = Pt−Pt−1

Pt−1
denote the wage rate per efficiency unit labor and the infla-

tion rate in period t, respectively. Pt is the price level in period t. Individual nominal

income Pty
i
jt ≡ Ptwte(z, j)l

i
jt + Ptrtk

i
jt is taxed at the progressive rate τ .6 In addition, the

households receive transfers trt from the government.

During retirement, agents receive public pensions pent in period t irrespective of their

employment history and the budget constraint of the retired agent at age j = T +1, . . . , T +

TR is given by

ai
j+1,t+1 = ki

j+1,t+1 + mi
j+1,t+1 = (1 + rt)k

i
jt +

mi
jt

1 + πt

+ pent + trt −
τt(Pty

i
jt)

Pt

− ci
jt. (9)

6In models similar to ours (but without a monetary sector), Ventura (1999) and Castañeda et al. (2003)

study the effects of a flat rate tax reform on distribution and welfare. We follow Castañeda et al. who

assume that both labor and interest income are taxed at the same rate.
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The necessary conditions of the working households with regard to consumption ci
jt, capital

ki
j+1,t+1, real money mi

j+1,t+1, and labor lijt are as follows:

λi
jt = uc(c

i
jt,m

i
jt, 1− lijt) (10)

λi
jt = βsj+1Et

[
λi

j+1,t+1

(
1 + rt+1

(
1− ∂τ

∂Pt+1yi
j+1,t+1

))]
(11)

λi
jt = βsj+1Et

[
λi

j+1,t+1

1

1 + πt+1

+ um(ci
j+1,t+1,m

i
j+1,t+1, 1− lij+1,t+1)

]
(12)

ul(c
i
jt,m

i
jt, 1− lijt) = λi

jtwte(j, z)

[
1− ∂τ

∂Ptyi
jt

]
, (13)

where ux(.) denotes the first partial derivative of the utility function with regard to the

argument x = c, 1 − l, m. The first-order conditions of the retired household are given by

(10)-(12) with lijt ≡ 0.

3.2 Production

Firms are of measure one and produce output with effective labor N and capital K. Ef-

fective labor Nt is the product of working hours and individual productivity and is defined

in more detail below.

Effective labor Nt is paid the wage wt. Capital Kt is hired at rate rt and depreciates at

rate δ. Production Yt is characterized by constant returns to scale and assumed to be

Cobb-Douglas:

Yt = F (Kt, Nt) = Kα
t N1−α

t . (14)

In a factor market equilibrium, factors are rewarded with their marginal product:

wt = (1− α)Kα
t N−α

t , (15)

rt = αKα−1
t N1−α

t − δ. (16)

3.3 Government

Government expenditures consists of government consumption Gt, government lump-sum

transfers Trt to households, and social securities expenditures Pent. Government expen-

ditures are financed by an income tax Taxt, seignorage St, and confiscated accidental

bequests Beqt:
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Gt + Pent + Trt = Taxt + St + Beqt. (17)

We follow Castanñeda et al. (2003) and characterize the U.S. income tax structure by a

progressive tax function. In particular, we also adapt the following functional form for the

income tax function that is based upon the estimates of Gouveia and Strauss (1994):

τ(Ptyt) = b0,t

(
y − (

y−b1,t + b2,t

)− 1
b1,t

)
(18)

We further assume that the government adjusts the nominal income tax brackets every

TB year. Without the loss of generality, we assume that the income tax rate schedule is

adjusted in periods (=years) t ∈ {0, TB, 2TB, 3TB, . . .}. With regard to our tax function

(18), this is equivalent to assume that the tax parameters {b0,t, b1,t, b2,t} are adjusted every

TB years so that the real tax burden is the same as in the benchmark year t = 0. As a

consequence, agents average and marginal income tax rates increase in the years between

two successive tax rate adjustments as inflation increases the nominal income Pty
i
jt ceteris

paribus.

3.4 Monetary authority

Nominal money grows at the exogenous rate θ:

Mt −Mt−1

Mt−1

= θ. (19)

The seignorage is transferred lump-sum to the government:

St =
Mt −Mt−1

Pt

. (20)

3.5 Stationary equilibrium

The concept of equilibrium applied in this paper uses a recursive representation of the

consumer’s problem following Stokey et al. (1989). Let V i
jt(k

i
jt,m

i
jt, z, µ) be the value of the
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objective function of the j-year old agent with equity ki
jt, real money mi

jt, and idiosyncratic

productivity level z in period t. The distribution of money and capital is denoted by µ(.).

As the tax schedule is adjusted every TB periods, the period t is also an argument of the

value function. V i
jt(k

i
jt,m

i
jt, z, µ) is defined as the solution to the dynamic program:

V i
jt(k

i
jt,m

i
jt, z, µ) = (21)

max
ki

j+1,t+1,mi
j+1,t+1,ci

jt,l
i
jt

{
u

(
ci
jt,m

i
jt, 1− lijt

)
+ βsj+1Et

[
V i

j+1,t+1(k
i
j+1,t+1,m

i
j+1,+t1, z

′, µ′)
]}

subject to (7), (8) or (9) and k,m ≥ 0. Optimal decision rules of the agent i in period t

at age j are a function of the individual state variables ki
jt, mi

jt, and z, the distribution of

money and capital, µ, and the period t. Let ct(k,m, z, j, µ), lt(k, m, z, j, µ), k′t(k, m, z, j, µ),

and m′
t(k, m, j, µ) denote the optimal consumption, labor supply, next-period capital stock,

and next-period real money balances for a j-year aged individual with productivity z,

capital stock k, and real money balances m, and distribution of capital k and money m

in period t. Furthermore, let µt(k, m, z, j) denote the measure of j-year old agents with

productivity z in period t that hold capital k and real money balances m.

We will consider a stationary equilibrium where the inflation rate is constant in every

period t. Furthermore, government consumption is assumed to be constant, Gt = G, and

pensions pent are assumed to be of equal magnitude every TB periods, respectively. As

a consequence, the factor prices, aggregate capital and labor, and the distribution µt are

also the same every TB periods, respectively.

Definition

A stationary equilibrium for a given government policy {b0,t, b1,t, b2,t, Gt, pent} and central

bank policy θt = θ is a collection of value functions V i
jt(k,m, z, µ), individual policy rules

ct(k, m, z, j, µ), lt(k, m, z, j, µ), k′t(k, m, z, j, µ), m′
t(k, m, z, j, µ), relative prices of labor and

capital {wt, rt}, and a law of motion for the distribution µt+1 = g(µt) such that:

1. Money grows at the exogenous rate θ and the seignorage (20) is transferred lump-sum

to the government.

2. The inflation rate πt is constant and equal to the money growth rate θ.
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3. The government adjusts the tax schedule in the years {0, TB, 2TB, . . .}. In the years

t ∈ {p + TB, p + 2TB, p + 3TB, . . .}, p = 0, . . . , TB − 1, government consumption

Gt and individual pensions pent are the same, respectively so that all exogenous

variables in the economy are the same every TB periods.

4. The government budget (17) is balanced.

5. Individual and aggregate behavior are consistent:

Kt =
T+T R∑
j=1

∫

k

∫

m

∫

z

k µt(k, m, z, j) dz dm dk, (22)

Nt =
T∑

j=1

∫

k

∫

m

∫

z

lt(k, m, z, j, µ)e(z, j)µt(k, m, z, j) dz dm dk (23)

Ct =
T+T R∑
j=1

∫

k

∫

m

∫

z

ct(k, m, z, j, µ) µt(k, m, z, j) dz dm dk, (24)

Pent =
T+T R∑
j=T+1

∫

k

∫

m

∫

z

pent µt(k, m, z, j) dz dm dk, (25)

Taxt =
T+T R∑
j=T+1

∫

k

∫

m

∫

z

τ (Ptyt(k, m, z, j))

Pt

µt(k, m, z, j) dz dm dk, (26)

Beqt =
T+T R∑
j=1

∫

k

∫

m

∫

z

(1− sj+1)a
′
t−1(k, m, z, j, µ)µt−1(k, m, z, j) dz dm dk (27)

M

P
=

T+T R∑
j=1

∫

k

∫

m

∫

z

m µt(k, m, z, j)dz dm dk, (28)

where a′t(.) ≡ k′t(.)+m′
t(.) are the optimal next-period assets and yt(k, m, z, j) denotes

the real income of a j-year old agent with productivity z, capital k, and money m in

period t. Furthermore, trt = Trt.

6. Relative prices {wt, rt} solve the firm’s optimization problem by satisfying (15) and

(16).

7. Given the government policy {b0,t, b1,t, b2,t, Gt, pent} and the distribution µt, the in-

dividual policy rules ct(.), k′t+1(.), m′
t+1(.), and lt(.) solve the consumer’s dynamic

program (21).
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8. The goods market clears in every period t:

Kα
t N1−α

t = Ct + δKt + Kt+1 −Kt. (29)

9. The dynamics of the distribution µt+1 = g(µt) are consistent with individual behavior:

µt+1(k
′,m′, z′, j + 1) = (30)∫

k

∫

m

∫

z

1k′=k′t(k,m,z,j,µ) · 1m′=m′
t(k,m,z,j,µ) · Pr(z′|z) · µt(k,m, z, j) dz dm dk,

where 1k′=k′t(.) is an indicator function that takes the value one if k′ = k′t(.) and

zero otherwise. 1m′=m′
t(.)

is defined in an analogous way. Furthermore, the new-born

generation has zero wealth, k = 0 and m = 0.7 Notice further that, in particular,

µt = µt+TB in a stationary equilibrium.

In the Appendix, we describe the computational algorithm that we use in order to compute

an approximation to this equilibrium.

4 Calibration

Periods correspond to years. We assume that agents are born at real lifetime age 20 which

corresponds to j = 1. Agents work T = 40 years corresponding to a real lifetime age of

60. They live a maximum life of 60 years (TR = 20) so that agents do not become older

than real lifetime age 80. The sequence of conditional survival probabilities {sj}59
j=1 is set

equal to the Social Security Administration’s survival probabilities for men aged 20-78 for

the year 1994.8 The survival probabilities decrease with age, and s60 is set equal to zero.

The calibration of the parameters α, δ, pen, and θ and the Markov process e(z, j) is chosen

in accordance with existing general equilibrium studies. Following Prescott (1986), the

capital income share α is set equal to 0.36. The annual rate of depreciation is set equal to

7For computational purpose, agents of the first-year generation are endowed with small money balances

so that the utility function does not take the value of infinity.
8We thank Mark Huggett and Gustavo Ventura for providing us with the data.
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Table 2: Calibration of parameter values for the U.S. economy

Description Function Parameter

utility function U = γ ln c + (1− γ) ln m + B ln(1− l) γ = 0.974, B = 1.72

discount factor β β = 0.969

production function Y = KαN1−α α = 0.36

depreciation δ δ = 0.08

money growth rate θ θ = 0.05

pension replacement rate 0.50

periods between
tax schedule adjustments TB TB = 3

income tax function τ(y) = b0

(
y − (

y−b1 + b2

)− 1
b1

)
b0 = 0.258, b1 = 0.768,

in t = 0 with P0 = 1 b2 = 0.031

labor endowment process zt = ρzt−1 + εt, εt ∼ N(0, σε) ρ = 0.96, σε = 0.045
ln e(z, 1) ∼ N(ȳ1, σy1) σy1 = 0.38

δ = 0.08. Pensions are distributed lump-sum to the retired agents. The replacement ratio

of pensions to net average earnings amounts to 50% in every period t. Hence, pensions are

a function of the distribution µt and, hence, Kt and Nt, and are the same every TB periods.

The income tax rate is adjusted every TB = 3 years in accordance with the average of

adjustment frequencies in the pre-85 period and the total U.S. postwar history: This can

be seen by calculating the average of means reported in the fifth line from bottom and the

last line in Table 6 (Appendix).9 The model parameters are summarized in Table 2.

The tax function (18) is calibrated with the help of the estimates from Gouveia and Strauss

(1994).10 In particular, we set the income tax parameters in period t = 0 (where we

9Our qualitative results are the same in the cases TB = 2 and TB = 4. The results for the case TB = 4

are also presented in section 5.
10These parameter values have also been applied by Castañeda et al (2003).
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normalized the price level to one, P0 = 1) equal to b0 = 0.258, b1 = 0.768, b2 = 0.031.

The income tax parameters b0 and b1 are taken from Gouveira and Strauss for the tax year

1989, while b2 has been adjusted so that the tax rate of the average income in our model

is equal to the tax rate of the average U.S. income. Every TB years, these parameters

are adjusted so that the average and marginal tax rates of the real income are unchanged

between period TB and p · TB, p = 1, 2, . . ..

The labor endowment process is given by e(z, j) = ezj+ȳj , where ȳj is the mean lognormal

income of the j-year old. The mean efficiency index ȳj of the j-year-old worker is taken

from Hansen (1993), and interpolated to in-between years. As a consequence, the model

is able to replicate the cross-section age distribution of earnings of the U.S. economy.

Following İmrohoroğlu et al. (1998), we normalize the average efficiency index to one. The

age-productivity profile is hump-shaped and earnings peak at age 50.

The idiosyncratic productivity shock zj follows a Markov process. The Markov process is

given by:

zj = ρzj−1 + εj, (31)

where εj ∼ N(0, σε). Huggett (1996) uses ρ = 0.96 and σε = 0.045. Furthermore, we

follow Huggett and choose a lognormal distribution of earnings for the 20-year old with

σy1 = 0.38 and mean y1. As the log endowment of the initial generation of agents is

normally distributed, the log efficiency of subsequent agents will continue to be normally

distributed. This is a useful property of the earnings process, which has often be described

as log normally in the literature.

The remaining three parameters β, B, and γ from the utility function are chosen to match

the following characteristics of the U.S. economy as closely as possible: i) the capital-output

ratio K/Y amounts to 3.0 as found by Auerbach and Kotlikoff (1995), ii) the average labor

supply of the working households amounts to approximately one third of available time,

and iii) the average velocity of money PY/M is equal to the annual velocity of M1 during

1960-2001, which is equal to 5.18. Our calibration β = 0.969, B = 1.72, and γ = 0.974

implies a capital-output ratio equal to 2.98, an average labor supply l̄ = 0.326, and an

annual velocity of money equal to 5.12.
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5 Results

In this section, we study the effects of a change of the money growth rate θ or, equally,

the inflation rate π on the stationary distribution of income. Remember that, in our

benchmark case, the inflation rate is equal to 5% (in the U.S. the average CPI-U for the

1970s, 1980s, and 1990s equals 5.2%), and the tax schedule is adjusted every 3 years. The

effect of the “bracket creep” on the marginal and average tax rates is illustrated in Figures

5 and 6 (where the average real income of the economy is normalized to one). Obviously,

the average income tax and the marginal tax rate hardly change after one or two years of

“bracket creep”. Hence, we would expect only small effects from the “bracket creep” on the

individual’s savings and labor supply.

Figure 5: Average income tax rate

Table 3 summarizes our results for the benchmark case. The first column gives the number

of periods that have been elapsed since the last tax schedule adjustment. The remaining

columns present the aggregate capital stock Kt, average labor supply l̄t, aggregate effective

labor Nt, aggregate production Yt, average real money balances m̄t, government transfers

trt, and total income taxes Taxt, and the Gini coefficients of the income distribution. Notice

that the increase in the marginal and average income tax rates between two successive

periods of the tax schedule adjustment results in an increase of total income taxes of
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Figure 6: Marginal income tax rate

approximately 2.5% each year. Similarly, transfers to the households also increase in order

to keep the government budget balanced. Surprisingly, aggregate savings, Kt + m̄t, and

average labor supply l̄t even increase with higher marginal tax rates. However, quantitative

effects are of relatively small order. As a consequence, the pre-tax wage income remains

almost unchanged during the course of “bracket creep” and is characterized by a Gini

coefficient equal to approximately 0.56. Notice that this value is close to values observed

empirically. Dı́az-Giménez et al. (1997) find a value of 0.51 for households aged 36-50.

The Gini coefficient of the total net income is smaller and amounts to only 0.49 as income

is taxed progressively and transfers are distributed lump-sum. During the course of no

adjustment, the Gini coefficient of total net income falls by about 0.4%. Given that the

Gini coefficient in the U.S. increased roughly by 2% per decade from the 1970s to 1990s

(based on figures by Kopczuk et al. 2007), the effect can be made responsible for offsetting

about one fifth of the decadal rise in income inequality. In absolute terms, therefore, this

effect approximately corresponds to the effect the decline in union membership had on

earnings inequality in the U.S. as calculated by Freeman (1993). According to figures

provided by the U.S. Census Bureau’s Current Population Survey (Annual Social and

Economic Supplement) the Gini coefficient of the white, not Hispanic, U.S. population

increased from 39.2% in 1972 to 44.9% in 1999. In this case, the mean increase per decade
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Table 3: “Bracket creep”, aggregate values and distribution for π = 5%

year t after Gini coefficient
tax code Wage Total Net
adjustment Kt l̄t Nt Yt m̄t trt Taxt Income Income

0 2.063 0.2963 0.3604 0.6754 0.1425 0.03532 0.06514 0.561 0.496
1 2.065 0.2992 0.3638 0.6797 0.1419 0.03676 0.06693 0.560 0.494
2 2.066 0.3027 0.3671 0.6838 0.1412 0.03820 0.06871 0.559 0.492

Table 4: “Bracket creep”, aggregate values and distribution for π = 10%

year t after Gini coefficient
tax code Wage Total Net
adjustment Kt l̄t Nt Yt m̄t trt Taxt Income Income

0 2.065 0.2943 0.3583 0.6731 0.0900 0.0348 0.0647 0.561 0.495
1 2.068 0.2972 0.3616 0.8303 0.0898 0.6774 0.0676 0.560 0.492
2 2.069 0.3002 0.3649 0.8353 0.0895 0.6815 0.0705 0.559 0.489

is even lower equaling 1.9%, and the distributional bias of the “bracket creep” corresponds

to about 21% of this effect in absolute terms.

In the U.S. postwar history, double-digit inflation rates of 10-13.5% have been observed in

the mid and late 1970s and early 1980s. In this sense, our strategy turns to counterfactual

simulations combining the average adjustment practice of the pre-85 and total period with

the high levels of inflation witnessed in the last half of the 1970s. In order to consider

the effects of a higher inflation rate, we recompute the model for the money growth rate

θ = π = 10%. The results for the high-inflation economy are summarized in Table 4.

Following an increase of inflation from 5% to 10%, agents reduce their stationary real money

balances. The average real money balances m̄t drops from 0.142 to 0.090. Furthermore,

agents are subject to a more severe “bracket creep” and governmental tax receipts increase

by a higher percentage between period 0, 1, and 2. Again, our finding for an inflation

rate π = 5% is confirmed that aggregate savings and average labor supply increase during
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Table 5: “Bracket creep”, aggregate values and distribution for π = 5%
Four-annual tax adjustments, TB = 4

year t after Gini coefficient
tax code Wage Total Net
adjustment Kt l̄t Nt Yt m̄t trt Taxt Income Income

0 1.983 0.2774 0.3333 0.6334 0.1451 0.03148 0.05909 0.560 0.495
1 1.986 0.2803 0.3370 0.6382 0.1445 0.03292 0.06089 0.560 0.494
2 1.988 0.2834 0.3407 0.6429 0.1436 0.03438 0.06271 0.559 0.492
3 1.989 0.2868 0.3446 0.6477 0.1426 0.03585 0.06453 0.557 0.490

the course of “bracket creep.” In addition, higher inflation reduces both the average labor

supply and the inequality of the after-tax income distribution in the presence of “bracket

creep.” The Gini coefficient of total net income two periods after the most recent tax

schedule adjustment drops from 49.2% to 48.9%. In absolute terms, this effect equals

nearly one third of the mean rise in income inequality of the 1970s, 1980s, and 1990s as

measured by the Gini coefficient (in particular, for the white, not Hispanic, population).

The U.S. government used to adjust its income tax schedule less frequently in the years

prior to 1985 than in recent years. In order to analyze the effects of a less frequent income

tax schedule adjustment and, hence, a longer duration of the “bracket creep”, we extend

the duration of the “bracket creep” to TB = 4 years (keeping the inflation rate at π = 5%);

see the corresponding mean frequency line for the pre-85 period in Table 6 (Appendix).

As can be seen by inspection of Table 4 and Table 5, agents decrease aggregate savings

in this case by approximately 4.0% (compare the dimension of entries in the respective

table). The fall in the average labor supply l̄t is even more pronounced and amounts to

approximately 6.3%. Accordingly, the duration of the “bracket creep” seems to be more

important for the individual’s labor supply and savings decision than the yearly increase in

the marginal and average income tax rates. With regard to the progressive bias on income

inequality, a longer period of “bracket creep” results in an effect which equals one fourth of

the absolute value of the mean decadal change in the Gini coefficient.
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6 Conclusion

“Bracket creep” has often been cited in the literature as one of the major distortionary

effects of inflation. However, whether moderate levels of inflation also affect income-

inequality through “bracket creep” has virtually not been analyzed since the 1970s. Both

our empirical and theoretical analysis suggest a progressive effect. In terms of size, it

amounts to about one fifth to one third of the absolute value of the mean change in the

Gini coefficient for one decade. The quantitative effects depend not only on the level of

inflation but, in particular, also on the indexation system that is in place.

From our DSGE model, we find that the duration of the “bracket creep,” i.e., the time

period between two successive income tax schedule adjustments, is more important for

equilibrium values of aggregate savings and average labor supply than the annual change

in the tax rates due to “bracket creep.” A shorter duration of “bracket creep” results in

higher equilibrium labor supply and output. In this sense, our results suggest the change in

U.S. tax policy after 1985 and the inflation-indexation under ERTA to represent a successful

change.
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7 Appendix

7.1 U.S. income tax: Changes of brackets and rates 1948-2004

The post-war changes of the U.S. income tax schedule are summarized in Table 6 below.

The main source of the entries in this table is the IRS (2003) along with volumes of the

U.S. Major Tax Guide and the ‘Individual Tax Statistics: Complete Report Publications’

of the IRS, where these volumes were available.

In the first column of the table, the second date is the decisive one and gives the year

of implementation of either a change of tax bracket boundaries (TBCt) or of regular in-

come tax rates for fixed boundaries (TRCt) or of, at least, one of the former: TCCt =

max {TBCt; TRCt}. TCCt captures any change in a nominally defined parameter of the

tax code. In the text, we refer to it as Dt in the broader definition. TBCt represents

what we refer to as Dt in the broader definition in the text. Index t denotes the specific

year of change. The strength of adjustment is classified ‘substantial’ (‘partial’) in case of

at least two (at most one) changing brackets (bracket) and/or at least two (at most one)

adjusted tax rates (rate) for fixed boundaries. In this context, it is noteworthy that the

partial changes for tax years 1968, 1969, and 1970 refer to the highest bracket’s tax rate

which was additionally burdened with a Vietnam War surcharge equal to 7.5% of tax for

1968, 10% of tax for 1969, and 2.5% of tax for 1970. This surcharge did not alter any other

than the highest bracket’s rate.

For more detail on the major legislative changes enacted and realized during the period

of observation the reader is referred to the brief outline in the text or to Auerbach and

Feenberg (2000). The changes of tax brackets reported in the following Table 6 are based

on figures of boundaries for statutory taxable net income, i.e. income after subtracting

deductions but before subtracting personal exemptions. Income in this definition still is

the tax base for regular income tax, applicable to U.S. citizens and residents. Deductions

and provisions unique to nonresident aliens are not considered. The same holds for the tax

rates underlying variable TRCt. They also exclude the effect of tax liability reducing tax

credits and refer to regular income tax, consisting in normal tax and surtax.11

11For tax years starting with 1954, normal tax and surtax rates were, in effect, combined into a single

rate structure; see IRS (2003), p. 325.
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Table 6. U.S. individual income tax: Changes of brackets and rates 1948-2004

Consecutive Adjustment Major legislative Variables

tax years strength change TBCt TRCt TCCt

49 - 50 substantial − 0 1 1

50 - 51 substantial − 0 1 1

51 - 52 substantial − 0 1 1

53 - 54 substantial − 0 1 1

63 - 64 substantial Revenue Act 1 1 1

64 - 65 substantial − 1 1 1

67 - 68 partial − 0 1 1

68 - 69 partial Reform Act 0 1 1

69 - 70 partial − 0 1 1

76 - 77 substantial − 1 0 1

78 - 79 substantial − 1 0 1

80 - 81 substantial Recovery Tax Act (I) 0 1 1

81 - 82 substantial − 1 1 1

82 - 83 substantial − 1 1 1

83 - 84 partial − 1 0 1

84 - 85 substantial Recovery Tax Act (II) 1 0 1

85 - 86 substantial Reform Act 1 0 1

86 - 87 substantial − 1 1 1

87 - 88 substantial − 1 1 1

88 - 89 substantial − 1 0 1

89 - 90 substantial − 1 0 1

90 - 91 substantial OB Reconciliation Act 1 1 1

91 - 92 substantial − 1 0 1

92 - 93 substantial − 1 1 1

93 - 94 substantial − 1 0 1

94 - 95 substantial − 1 0 1

95 - 96 substantial − 1 0 1

96 - 97 substantial − 1 0 1
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Table 6 (continued). U.S.income tax: Changes of brackets and rates 1948-2004

Consecutive Adjustment Major legislative Variables

tax years strength change TBCt TRCt TCCt

97 - 98 substantial − 1 0 1

98 - 99 substantial − 1 0 1

99 - 00 substantial − 1 0 1

00 - 01 substantial − 1 1 1

01 - 02 substantial − 1 1 1

02 - 03 substantial − 1 1 1

03 - 04 substantial − 1 0 1

pre-85: (i) sum 7 12 15

(ii) mean frequency (yrs) 5.29 3.08 2.46

post-84: (i) sum 20 7 20

(ii) mean frequency (yrs) 1.00 2.86 1.00

total period: (i) sum 27 19 35

(ii) mean frequency (yrs) 2.11 3.00 1.63

In general, there are four different (historical) sets of rates and brackets depending on

the respective tax paying person(s): First, “income splitters”, i.e. married taxpayers who

“use the joint return filling status” and split their income for tax purposes in an effort to

effectively double the width of their taxable (or net income) size brackets. Figures un-

derlying the chronological categorization of Table 6 above are based on this set. Second,

starting with 1952, a set of rates was introduced for “heads of households”, i.e., for un-

married individuals who paid over half of the cost of maintaining a home for a qualifying

person (e.g., a child or parent), or for certain married individuals who had lived apart from

their spouses for the last six months of the tax year. This filling status was liberalized

in 1970 and provides approximately half the advantages of the income-splitting. Third,

the so-called “surviving spouse”-set of rates and brackets for which both, rates and taxable

income brackets, are designed analogously to the ones of income-splitters. Finally, the

remaining taxpayer-set is given for single persons. Since the late 1960s there has been an

effort of convergence of this set with the one of married couples filling jointly.

It is noteworthy that the 1986 Reform Act implemented during the Reagan-era hallmarks
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the start of a new period of lower rates and a reduced number of tax brackets.

7.2 Computation

The model of section 3 cannot be solved analytically, but only numerically. The solution

algorithm is described by the following steps:

1. Parameterize the model. Let TB denote the number of years between two adjust-

ments of the nominal income tax schedule.

2. Make initial guesses of the law of motion for the aggregate capital stock

{K0, K1, K2, . . . , KTB−1}, aggregate effective labor {N0, N1, N2, . . . , NTB−1}, aggre-

gate real money {M/P0,M/P1,M/P2, . . . ,M/PTB−1} and aggregate (=invidual) trans-

fers {tr0, tr1, . . . , trTB−1}.

3. Compute the values of wt and rt for t = 0, 1, . . . , TB − 1 that solve the firm’s Euler

equations. Compute the pension pent so that the replacement rate of pensions with

regard to net average labor income is equal to the empirical value.

4. Compute the household’s decision functions by solving the Euler equations.

5. Compute the distribution µt of the individual state variable {k, m, z, j} by forward

induction over age j = 1, . . . , T + TR for t = 0, 1, . . . , TB − 1.

6. Compute the aggregate capital stock {K0, K1, . . . , KTB−1}, aggregate effective labor

{N0, N1, N2, . . . , NTB−1}, aggregate real money {M/P0,M/P1,M/P2, . . . , M/PTB−1}
and aggregate transfers {tr0, tr1, . . . , trTB−1}. Update {K0, K1, . . . , KTB−1},
{N0, N1, N2, . . . , NTB−1}, {M/P0,M/P1,M/P2, . . . ,M/PTB−1} and {tr0, tr1, . . . , trTB−1}
and return to step 2 until convergence.

We discretize the state space (k, m, z) using an equispaced grid over the capital stock k, the

money balances m, and the individual productivity z. The upper grid points kmax = 20.0

and mmax = 0.4 are found to be non-binding. For the productivity z, the (five-point)

grid ranges from −2σy1 to 2σy1 . The probability of having productivity shock z1 in the

first period of life is computed by integrating the area under the normal distribution.
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The transition probabilities are computed using the method of Tauchen (1986). As a

consequence, the efficiency index e(z, j) follows a finite Markov chain.

In step 4, a finite-time dynamic programming problem is to be solved. We use piecewise

linear functions in order to approximate the policy functions ct(k, m, z, j), k′t(k, m, z, j),

m′
t(k, m, z, j), and lt(k,m, z, j) between grid points. In particular, we solve the Euler

functions (10)-(13) for given sequence of the aggregate capital stock Kt, aggregate effective

employment Nt, and transfers trt. The methods for the computation of the policy functions

and the aggregate variables are described in detail in Heer and Maußner (2005).

As the household is born without any assets, his first-period wealth and his real money

balances are zero. As a consequence, the value function would take the value −∞ as

m1t = 0. For computational purposes, therefore, we slightly change the utility function

and introduce a small constant ψ into (6), ũ = u(c,m + ψ, 1− l).
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