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Abstract

In this paper we suggest a Stata routine for multinomial logit models with unob-

served heterogeneity using maximum simulated likelihood based on Halton sequences.

The purpose of this paper is twofold: First, we provide a description of the techni-

cal implementation of the estimation routine and discuss its properties. Further, we

compare our estimation routine to the Stata program gllamm which solves integration

using Gauss Hermite quadrature or adaptive quadrature. For the analysis we draw

on multilevel data about schooling. Our empirical findings show that the estimation

techniques lead to approximately the same estimation results. The advantage of simu-

lation over Gauss Hermite quadrature is a marked reduction in computational time for

integrals with higher dimensions. Adaptive quadrature leads to more stable results

relative to the other integration methods. However, again simulation is more time

efficient. We find that maximum simulated likelihood leads to estimation results with

reasonable accuracy in roughly half the time required when using adaptive quadrature.
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1 Introduction

In many empirical applications, e.g. estimation of mixed logit models, the researcher is

faced with the problem that standard maximum likelihood estimation can not be applied

as analytical integration is not possible. Instead, methods such as quadrature or simulation

are required for approximation of the integral. In this paper we suggest a Stata routine

for multinomial logit models with unobserved heterogeneity using maximum simulated

likelihood (MSL).1 The purpose of this paper is twofold. First, we provide a description of

the technical implementation of the estimation routine and discuss its properties. Further,

we compare our estimation routine with the program gllamm which is implemented in

Stata. gllamm is a very flexible programm incorporating a variety of multilevel models

including mixed logit, see Rabe-Hesketh, Skrondal, and Pickles (2004) or Skrondal and

Rabe-Hesketh (2005). Our routine differs from gllamm for computational reasons: whereas

in gllamm integrals are solved using classical Gauss Hermite or adaptive quadrature, we

suggest simulation based on Halton sequences for integration. In our analysis we compare

the performance of the estimation techniques using multilevel data about schooling from

the gllamm manual.

Our empirical findings show that when the integral is reasonably well approximated

the estimation techniques lead to nearly the same results. The advantage of Halton based

simulation over classical Gauss Hermite quadrature is computational time; this advantage

is increasing with the dimensions of the integral. Adaptive quadrature leads to more stable

results relative to the other integration methods. However, again simulation is more time

efficient. We find that maximum simulated likelihood leads to estimation results with

reasonable accuracy in roughly half the time required when using adaptive quadrature.

In the next section, we provide a brief discussion about the estimation of multinomial

logit models with unobserved heterogeneity using MSL. Hereafter, we present a description

of the technical implementation of the estimation routine and discuss its properties. In

section 4, we compare the performance of MSL with estimation based on classical and

adaptive quadrature using multilevel data about schooling. The final section concludes.

2 Multinomial logit models with unobserved heterogeneity

Mixed logit models are a highly flexible class of models approximating any random utility

model (Train, 2003). In this application we focus on a specific model of this broad class,

the multinomial logit panel data model with random intercepts.2 The results we present

can be generalized and extended to other mixed logit models both with panel and cross
1Our approach closely follows Train (2003). Train implemented a program for mixed logit models in

GAUSS.
2Note, we use panel data and multilevel data exchangeably.
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sectional data.

The theoretical framework of multinomial logit models can be described as follows.

Each individual i is faced with J different choices at time t. The individual receives a

certain level of utility at each choice alternative and chooses the alternative that maximizes

the utility. As well documented in the literature, see e.g. Train (2003), the probability of

making choice j conditional on observed characteristics Xit that vary between individuals

and over time and unobserved individual effects αi that are time constant has the following

form:

P (j|Xit, αi) =
exp(Xitβj + αij)

ΣJ
k=1exp(Xitβk + αik)

. (1)

As the choice probabilities are conditioned on αi it is necessary to integrate over

the distribution of the unobserved heterogeneity. Thus, the sample likelihood for the

multinomial logit with random intercepts has the following form:

L =
N∏

i=1

∫ ∞

−∞

T∏

t=1

J∏

j=1

(
exp(Xitβj + αj)

ΣJ
k=1exp(Xitβk + αk)

)dijt

f(α)dα, (2)

where dijt=1 if individual i chooses alternative j at time t and zero otherwise. The

coefficient vector and the unobserved heterogeneity term of one category are set to 0 for

identification of the model. For convenience we assume throughout our analysis that the

unobserved heterogeneity α is identically and independently distributed over the individ-

uals and follows a multivariate normal distribution with mean a and variance-covariance

matrix W, α ∼ f(a,W ). In most applications α is specified to be normally distributed,

however as Train (2003) points out the distributional assumption depends on the research

question; if more appropriate, distributions such as log-normal or uniform can be assumed.

As standard in random effects models the unobserved heterogeneity α is required to be

independent of the explanatory variables Xit.

In order to maximize the sample likelihood it is necessary to integrate over the dis-

tribution of unobserved heterogeneity. Yet, there exists no analytical solution for the

integral in equation (2). In the literature numerous methods for integral approximation

have been suggested and discussed. We focus on classical Gauss Hermite quadrature,

adaptive quadrature and simulation based on Halton sequences.

Gauss Hermite and adaptive quadrature

Gauss Hermite and adaptive quadrature is discussed in detail in Rabe-Hesketh, Skrondal,

and Pickles (2002). The idea behind the Gauss Hermite quadrature is to approximate

an integral by a specified number of discrete points. Adaptive quadrature is a Bayesian
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method that extends Gauss Hermite quadrature by making use of the posterior distrib-

ution of the unobserved heterogeneity. This significantly increases the accuracy of inte-

gration. The Stata program gllamm incorporates both integration methods, yet adaptive

quadrature is highly recommended for its higher accuracy (Rabe-Hesketh, Skrondal, and

Pickles, 2002).

Estimation with Maximum Simulated Likelihood

We suggest to integrate over the unobserved heterogeneity by using simulation and to

maximize a simulated likelihood . The intuition behind MSL is to draw R values from

the distribution of the unobserved heterogeneity with variance-covariance matrix W. For

each of these draws the likelihood is calculated and then averaged over the R draws. That

implies, instead of the exact likelihood a simulated sample likelihood (SL) is maximized:3

SL =
N∏

n=1

1
R

R∑

r=1

T∏

t=1

J∏

j=1

(
exp(Xitβj + αr

j)

Σj
k=1exp(Xitβk + αr

k)

)dijt

. (3)

Consider an example with three different choices (j = 3). For identification β1 and αi1

are normalized to zero. We assume that the unobserved heterogeneity differs between the

two other choices (αi2 6= αi3) and allow for correlation of these terms. Hence, the distrib-

ution of the unobserved heterogeneity can be described by a bivariate normal distribution

with:

α ∼ f





a2

a3


 ,


var2 cov23

cov23 var3





 . (4)

That implies when applying MSL we need to approximate a two dimensional integral.

Each draw r consists of two values (ε2, ε3)′ which follow a standard normal distribution.

We apply a Cholesky decomposition of the variance-covariance matrix W. A Cholesky

factor L of matrix W is defined such that LL’ =W. Then, the unobserved effects αr are

calculated by αr = Lεr. For our example that implies:


α2

α3


 =


l11 0

l21 l22





ε2

ε3


 . (5)

The example can be easily extended to more complex choice situations. However, with

increasing number of choices integration becomes more and more time intensive as the

dimension of the integral increases.
3Note, when using random draws MSL is equivalent to the ML estimator if N0.5/R → 0 and both N

and R→∞, for more detailed information, see e.g. Cameron and Trivedi (2005) .
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Instead of using random draws to obtain (ε2, ε3)′ we follow Train (2003) and recommend

to base simulation on Halton sequences. Halton sequences generate quasi random draws

that provide a more systematic coverage of the domain of integration than independent

random draws and induce a negative correlation over observations. Several studies such

as Train (1999) and Bhat (2001) have shown that in the context of mixed logit models the

accuracy can be markedly increased by making use of Halton sequences; the authors find

in their studies that the results are more precise with 100 Halton draws than with 1000

random draws. These results confirm that quasi-random sequences go along with a lower

integration error and faster convergence rates and therefore require clearly less number

of draws compared to pseudo-random sequences.4 However, as Train (2003) points out

the use of Halton draws in simulation based estimation is not completely understood and

caution is required. He provides an example of Halton sequences and discusses advantages

and anomalies of this method in the context of mixed logit models. Important to note is

that computational time and estimation results slightly vary with the chosen primes for

the Halton draws. This fact is documented by Train (2003) who found that the choice of

the primes might noticeably affect the estimated coefficients.

The advantages of Halton draws might not hold for other models in the same way, see

for example Cappellari and Jenkins (2006) who discuss Halton sequences for multivariate

probit models.

3 Stata Routine for MSL estimation

In this section we provide a ml model statement which refers to a multinomial logit panel

data model with two potentially correlated random intercepts that follow a bivariate nor-

mal distribution. This example can easily be extended to models with a higher number of

alternatives.

For illustration, we apply our program to a real data set about teachers’ evaluation

of pupils behaviour.5 The variables id and scy3 identify pupils and schools, respectively.

Teachers group pupils in three different quality levels (tby) which is the dependent variable

in our estimation. The data contain several additional variables explaining the quality level

of the pupils like sex and provide information about 1313 pupils in 48 schools. The number

of pupils differ between schools, i.e. we have an unbalanced panel.

The panel dimension of the data is not over time but over the pupils of a certain
4The expected integration error using pseudo-random sequences is of order R−.5 while the theoretical

upper bound for the integration error using quasi-random sequences is of order R−1, see Bhat (2001) or

Cameron and Trivedi (2005). This implies that a ten fold increase in the number of quasi-random draws

leads to the same improvement of accuracy as a hundred fold increase in the number of pseudo-random

draws.
5The data set is available as an ASCII file jspmix.dat (http://www.gllamm.org/jspmix.dat).
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school (scy3), hence in the estimation we can control for unobserved school specific effects

but we do not control for individual specific unobserved heterogeneity.6 For simplicity

we condition the rating of teachers next to unobservable effects only on one observable

variable, namely sex.

Before executing our program for MSL estimation we apply the program mdraws by

Cappellari and Jenkins (2006) to generate Halton Sequences and calculate the correspond-

ing values following a standard normal distribution. Alternatively, mdraws can be used to

create pseudo-normal draws.

It is important that, for each draw, the values (random 1‘r’ and random 2‘r’) are the

same for one observation within each unit, here within each school. Therefore, we create

draws for every school and merge these draws to every pupil within each school. In this

example we approximate the integral using 50 draws from the Halton sequence. We specify

the primes used to create the Halton sequences as 7 and 11, because we later on estimate

models with 150 draws and the number of draws should not be an integer multiple of any

of the used primes, see e.g. Cappellari and Jenkins (2006) for details. We make use of

the burn option to drop the first 10 draws of each sequence because the initial elements

of any two sequences can be highly correlated.

. matrix p = (7, 11)

. global draws "50"

. infile scy3 id sex stag ravi fry3 tby using jspmix.dat, clear

. save jspmix.dta, replace

. keep scy3

. sort scy3

. by scy3: keep if _n==1 (1265 observations deleted)

. mdraws, neq(2) dr($draws) prefix(c) burn(10) prime (p)
Created 50 Halton draws per equation for 2 equations. Number of initial draws
dropped per equation = 10 . Primes used:

7 11
. local repl=${draws}
. local r=1
. forvalues r=1/$draws{
2. gen random_1‘r’=invnorm(c1‘r’)
3. gen random_2‘r’=invnorm(c2‘r’)
4. }

. sort scy3

. save mdraws_${draws}, replace
file mdraws_50.dta saved
. use "jspmix.dta",clear
. sort scy3
. merge scy3 using mdraws_${draws}.dta
. drop _merge
. sort scy3

To get appropriate starting values for the coefficient vector, we use mlogit to estimate a
6The presented routine can easily be transferred to a model with time constant individual specific effects.

In this case the school (scy3) corresponds to the individual and one pupil to one individual observation at

time t.
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multinomial logit model without random intercepts. The variables a1, a2, and a3 take on

the value one if the choice 1, 2 or 3 is made, respectively, otherwise zero and are defined

using the tab command.

. mlogit tby sex, base(1)
(output deleted)
. matrix Init= e(b)
. tab tby, gen(a)
(output deleted)
.
. sort scy3

The following ml model statement can be applied independently of the chosen type of

draws (e.g. pseudo-random or Halton draws). We apply the method d0 because we

estimate panel data models with joint unobserved heterogeneity for groups of observations.

The method d0 requires the researcher to supply the log-likelihood function. The first and

second derivatives are obtained numerically, i.e. it is not necessary to supply analytically

calculations of the gradient and the Hessian of the log-likelihood function.7

program define mlogit_sim_d0
args todo b lnf
tempvar etha2 etha3 random1 random2 lj pi1 pi2 pi3 sum lnpi L1 L2 last
tempname lnsig1 lnsig2 atrho12 sigma1 sigma2 cov12

mleval ‘etha2’ = ‘b’, eq(1)
mleval ‘etha3’ = ‘b’, eq(2)
mleval ‘lnsig1’ = ‘b’, eq(3) scalar
mleval ‘lnsig2’ = ‘b’, eq(4) scalar
mleval ‘atrho12’ = ‘b’, eq(5) scalar

qui {
scalar ‘sigma1’=(exp(‘lnsig1’))^2
scalar ‘sigma2’=(exp(‘lnsig2’))^2
scalar ‘cov12’=[exp(2*‘atrho12’)-1]/[exp(2*‘atrho12’)+1]*(exp(‘lnsig2’))*(exp(‘lnsig1’))
gen double ‘random1’ = 0
gen double ‘random2’ = 0
gen double ‘lnpi’=0
gen double ‘sum’=0
gen double ‘L1’=0
gen double ‘L2’=0
by scy3: gen byte ‘last’=(_n==_N)
gen double ‘pi1’= 0
gen double ‘pi2’= 0
gen double ‘pi3’= 0

}
matrix W = ( ‘sigma1’ , ‘cov12’ \ ‘cov12’ , ‘sigma2’)

capture matrix L=cholesky(W)

7The principles of computing maximum likelihood estimators with Stata are described in Gould, Pit-

baldo, and Sribney (2003).
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if _rc != 0 {
di "Warning: cannot do Cholesky factorization of rho matrix"

}

local l11=L[1,1]
local l21=L[2,1]
local l22=L[2,2]

local repl=${draws}
local r=1
forvalues r=1/$draws{
qui {
replace ‘random1’ = random_1‘r’*‘l11’
replace ‘random2’ = random_2‘r’*‘l22’ + random_1‘r’*‘l21’

replace ‘pi1’= 1/(1 + exp(‘etha2’+‘random1’)+exp(‘etha3’+‘random2’))
replace ‘pi2’= exp(‘etha2’+‘random1’)*‘pi1’
replace ‘pi3’= exp(‘etha3’+‘random2’)*‘pi1’

replace ‘lnpi’=ln(‘pi1’*a1+‘pi2’*a2+‘pi3’*a3)

by scy3: replace ‘sum’=sum(‘lnpi’)
by scy3: replace ‘L1’ =exp(‘sum’[_N]) if _n==_N

by scy3: replace ‘L2’=‘L2’+‘L1’ if _n==_N
}

}

qui gen ‘lj’=cond(!‘last’,0, ln(‘L2’/‘repl’))
qui mlsum ‘lnf’=‘lj’
if (‘todo’==0|‘lnf’>=.) exit

end

Instead of estimating the variances and the correlation coefficient directly we estimate

transformed variables of these parameters, i.e. the logarithm of the standard deviations

(lnsig1 and lnsig2) and the inverse hyperbolic tangent of ρ (atrho12), to constrain them

within their valid limits. Therefore, the first step in our program is to calculate the vari-

ances (sigma1 and sigma2) and the covariance (cov12) of the bivariate normal distribution.

After that we apply a Cholesky decomposition of the covariance matrix W. In order to do

this, the matrix W has to be positive definite at each iteration. If this is not the case, our

program traps the error, shows a warning and uses the most recent estimate of W which

is guaranteed to be positive definite. This is assured by the command capture.8

Within the following loop we calculate the likelihood for each draw based on the

individual specific quasi-random terms random1 and random2. The two terms random1 ‘r’

and random2 ‘r’ are multiplied with the elements of the Cholesky matrix L, following

equation (5). The probabilities of making choice 1, 2 or 3 are expressed by pi1, pi2 and

pi3. Using the information about the realized choices, captured in variables a1, a2 and a3,
8The procedure is the same as in the program mvprobit by Cappellari and Jenkins (2003).
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the likelihood is evaluated for each observation. The corresponding log likelihood values

are added up within each unit for each draw (sum) and this sum is exponentiated for

the last observation per unit (L1). These likelihood values are added up over all draws

(L2). Following equation (3) the approximated likelihood is the average over the r draws.

The simulated likelihood can be maximized using the options to the ml maximize and ml

model command. To set the starting values, we use the command ml init. For the β, we

use the estimated coefficients from the mlogit saved as matrix Init. The starting values

of lnsig1, lnsig2 and atrho12 are set to 0.5.

. ml model d0 mlogit_sim_d0 ( tby = sex) ( tby = sex) /lnsig1 /lnsig2 /atsig12

. matrix start = (Init)

. ml init start 0.5 0.5 0.5, copy

. ml maximize

initial: log likelihood = -1338.0475
rescale: log likelihood = -1338.0475
rescale eq: log likelihood = -1301.4639
Iteration 0: log likelihood = -1301.4639
Iteration 1: log likelihood = -1300.4893
Iteration 2: log likelihood = -1299.4587
Iteration 3: log likelihood = -1299.4509
Iteration 4: log likelihood = -1299.4509

Number of obs = 1313
Wald chi2(1) = 14.22

Log likelihood = -1299.4509 Prob > chi2 = 0.0002

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
eq1 |

sex | .5488225 .14552 3.77 0.000 .2636085 .8340364
_cons | .59589 .1394991 4.27 0.000 .3224768 .8693032

-------------+----------------------------------------------------------------
eq2 |

sex | 1.104577 .1748037 6.32 0.000 .7619681 1.447186
_cons | -.5663381 .1816152 -3.12 0.002 -.9222974 -.2103788

-------------+----------------------------------------------------------------
lnsig1 |

_cons | -.3369519 .1695314 -1.99 0.047 -.6692274 -.0046763
-------------+----------------------------------------------------------------
lnsig2 |

_cons | -.1021489 .1602249 -0.64 0.524 -.4161839 .2118861
-------------+----------------------------------------------------------------
atsig12 |

_cons | 1.614593 .3185383 5.07 0.000 .9902697 2.238917
------------------------------------------------------------------------------

. _diparm lnsig1, function((exp(@))^2) ///
> deriv(2*(exp(@))*(exp(@))) label("sigma1")

sigma1 | .5097149 .1728254 .2622506 .9906909

. _diparm lnsig2, function((exp(@))^2) ///
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> deriv(2*(exp(@))*(exp(@))) label("sigma2")
sigma2 | .8152196 .2612369 .435018 1.527713

. _diparm atsig12, tanh label("roh12")
roh12 | .9238359 .0466745 .7574773 .9775391

.

. _diparm atsig12 lnsig1 lnsig2, function([exp(2*@1)-1]/[exp(2*@1)+1]*(exp(@2))*(exp(@3))) ///
> deriv(-(2*exp(2*@1+@2+@3)*(-1+exp(2*@1))/(1+exp(2*@1))^2)+2*exp(2*> @1+@2+@3)/(1+exp(2*@1)) ///
> [exp(2*@1)-1]/[exp(2*@1)+1]*(exp(@2))*(exp(@3)) ///
> [exp(2*@1)-1]/[exp(2*@1)+1]*(exp(@2))*(exp(@3))) label("cov12")

cov12 | .5955193 .188545 .2259779 .9650606

As mentioned above, we estimate the variances and the covariance in a transformed

metric. We make use of the program diparm to calculate and display the parameters and

their standard errors after the estimation. For this, the first derivative of the function

needs to be calculated. In addition diparm can be used to calculate the correlation and

its standard errors.

4 Illustrations

In the following we discuss the empirical performance of the MSL routine using a multilevel

data set about schooling (Junior School Project) that is taken from the gllamm manual

(Rabe-Hesketh, Skrondal, and Pickles, 2004). The data have been described in the previ-

ous section. The main purpose of this illustration is to provide a comparison of the above

described integration methods, Gauss Hermite and adaptive quadrature using gllamm and

simulation based on Halton draws using our MSL routine. We are interested in two find-

ings: i) the accuracy of the procedures, evaluated in terms of the stability of estimation

results, and ii) the computational time they require. Further, we want to show how the two

estimators perform when the dimension of the integrals increases. Therefore, we estimate

models with only one random term (one dimensional integral) and with two random terms

(two dimensional integral). One random term implies that unobserved effects are constant

between the alternatives. In the second example (two random terms), the heterogeneity

varies between the alternatives and is potentially correlated. The structure of unobserved

heterogeneity is the same as in the example described in section 2.

Computational time and accuracy of integral approximation depend on the chosen

number of quadrature points or number of draws when estimating. Therefore, we present

several estimations by increasing the number of quadrature points and draws. As there is

a trade off between accuracy of integration and computational time the number of points

or draws can become a crucial variable. It is difficult to provide a rigid test indicating the

optimal number of draws. In practice researchers often vary the number of draws or points
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to see whether the coefficients and the log likelihood remain constant as an indication

whether an adequate number of draws is chosen (Cameron and Trivedi, 2005). We present

results of six estimations using MSL with 25, 50, 100, 150, 200 and 500 draws from the

Halton sequences and six estimations with Gauss Hermite and adaptive quadrature, both

with 4, 8 and 16 points.9 Note, as we do not directly test for accuracy the comparison

needs to be interpreted carefully. All estimates were computed with Intercooled Stata

version 8.2 on a 3GHz Pentium 4 PC running Windows 2000 Professional. To make

computational time between both methods comparable we use the same starting values

for all estimations.

In the following we present the gllamm command for estimation of the model with

the two dimensional integral using four quadrature points (Gauss Hermite). For further

description of the syntax see (Rabe-Hesketh, Skrondal, and Pickles, 2004).

use "jspmix.dta",clear
mlogit tby sex, base(1)
matrix Init= e(b)
scalar var = exp(0.5)
matrix start= Init, var, var, 0.5
matrix colnames start= sex _cons sex _cons a2 a3 _cons
matrix coleq start= c2 c2 c3 c3 scy1_1 scy1_2 scy1_2_1
gen school =scy3 sort school sex tby
gen patt =_n
expand 3
sort patt
qui by patt: gen alt= _n
gen chosen =alt ==tby
sort pat alt
tab alt, gen (a)
gen dum=1
replace dum=0 if a1==1
eq dum: dum
eq a2: a2
eq a3: a3

gllamm alt sex, expand(patt chosen m)i(scy3)link(mlogit) /*
*/family(binom) nrf(2) eq(a2 a3) nip(4) trace from(start)

[Table 1 and 2 about here]

Table 1 shows the MSL results for the model with a common term of unobserved

heterogeneity. Comparing the coefficients and the log likelihood between the estimations
9In addition to that we estimated the model using MSL based on pseudo-random draws. Our results

are in line with previous studies, e.g. Train (1999) and Bhat (2001), and indicate that a much higher

number of pseudo-random draws is required than Halton draws to get relatively stable results.

11



we find that the results are fairly stable when using at least 50 draws. When using

only 25 Halton draws the deviations of the coefficients from those obtained with better

approximated integrals can be seen. However, even with more than 100 draws we find

that results slightly differ between the number of draws; the log likelihood varies between

the estimations in the first decimal place. Estimation time varies between the estimations

with an acceptable approximation of the integral from 0.41 (50 draws) to 8.31 minutes

(500 draws); estimation results suggest that computational time increases approximately

linear with the number draws.

Comparing the results derived with simulation with those estimated with quadrature,

we find that the estimation results are quite similar when the integral is reasonably well

approximated. When using Gauss Hermite quadrature at least 8 quadrature points are

required for integration. The log likelihood and the coefficients clearly differ between the

estimation with 4 and 8 points.

Turning to the adaptive quadrature, the picture changes. With only four quadra-

ture points the integral seem to be reasonably well approximated as a further increase

in quadrature points leads to very similar estimated parameters. This finding underlines

the result of Rabe-Hesketh, Skrondal, and Pickles (2002) who show the computational

advantage of the Bayesian approach relative to the classical quadrature.

For the one dimensional integral it seems that Halton based simulation performs sim-

ilarly to quadrature. Relative to Gauss Hermite quadrature there seem to be hardly any

difference in computational time for a comparable degree of accuracy. The Bayesian ap-

proach leads to more stable results with 4 quadrature points, computation time however

is higher compared to a simulation with 50 draws and about the same compared to sim-

ulation with 100 draws. This indicates that with a single term there is no advantage of

using MSL over the Bayesian approach.

[Table 3 and 4 about here]

In the following the complexity of the estimation increases by allowing the unobserved

heterogeneity to differ between the alternatives. Here the advantage of computational

time of Halton based simulation over Gauss Hermite quadrature becomes evident. With

at least 100 draws, coefficients and the log likelihood become relatively stable. For 100

draws the estimation takes more than 3 minutes. For a comparable level of integral ap-

proximation Gauss Hermite quadrature requires more than 11.5 minutes. Results from

MSL become more stable with 200 and 500 draws. The estimation with 200 draws takes

less than 7 minutes and the one with 500 draws about 20 minutes. When doubling the

number of quadrature points for the Gauss hermite approach computational time approxi-

mately quadruples (50 minutes) and the results are similar to the results from the adaptive

quadrature.
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With adaptive quadrature, again 4 points are sufficient for approximation of the inte-

gral. Results hardly change with a higher number of quadrature points. Computational

time with four points is about 8 minutes. Relative to simulation, adaptive quadrature

leads to more robust results. However, using simulation with 100 draws it is possible to

approximate the integral such that coefficients and the log likelihood are approximately

stable in less than 3.5 minutes. Here the trade off between computational time and accu-

racy becomes evident. Halton based simulation leads to results in less computational time

whereas adaptive quadrature provides results that are more stable.

From a practical point of view, the implementation of MSL based on Halton sequences

is relatively simple and has significant advantages in computational time if it is compared

to Gauss Hermite quadrate and simulation based on pseudo-random sequences, not re-

ported here. This is in particular true for higher dimensional integrals. In comparison to

adaptive quadrature our routine seems to be less stable. However, given the advantage

of computational time Halton based MSL could be the adequate model choice. The time

advantage becomes even more important when sample size or the dimension of the integral

increases.10

Therefore we recommend the presented routine as an alternative to the quadrature

approach implemented in gllamm. Moreover, the principles of our routine can be a useful

starting point for the evaluation of likelihood functions which are not pre-programmed in

Stata and involve a multivariate normal distribution of the unobserved heterogeneity.

5 Conclusion

In this paper we have suggested a Stata routine for multinomial logit models with un-

observed heterogeneity using maximum simulated likelihood based on Halton sequences.

The routine refers to a model with two random intercepts, but can easily be extended to

models with a higher dimension. Further extensions of the presented code are possible,

examples are Haan (2005), estimating a dynamic conditional logit model or Uhlendorff

(2006), estimating a dynamic multinomial logit model with endogenous panel attrition.

Using multilevel data about schooling we compare the performance of our code to the

Stata program gllamm; gllamm numerically approximates integrals using classical Gauss

Hermite quadrature and adaptive quadrature. The comparison leads to the conclusion that

estimation by MSL provides approximately the same estimation results as estimation with

Gauss Hermite quadrature or adaptive quadrature. In comparison to classical quadrature,

simulation markedly reduces computational time when a higher dimensional integral needs
10A possibility to reduce the trade off between estimation time and accuracy might be Bayesian sim-

ulation. Train (2003) suggests to employ Bayesian simulation instead of classical MSL as the Bayesian

method leads to consistent estimates even with a fixed number of draws.
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to be approximated. However, relative to the Bayesian method the advantage of simulation

vanishes in our example. Adaptive quadrature leads to very stable results with only a few

quadrature points (four points). Estimations with 100 draws are less stable but lead to

qualitatively the same results and take roughly half of the estimation time. This finding

underlines the trade off between computational time and accuracy of the results which

becomes very important if estimation takes not some minutes but some hours or days.

6 Acknowledgement

This project is funded by the German Science Foundation (DFG) in the priority program

”Potentials for more flexibility on heterogenous labor markets” (projects STE 681/5-1

and ZI 302/7-1). We would like to thank David Drukker, Stephen Jenkins, Oswald Haan,

Katharina Wrohlich, Dirk Hofmann and an anonymous referee for valuable comments and

suggestions.

References

Bhat, C. (2001): “Quasi-random maximum simulated likelihood estimation of the mixed

multinomial logit model,” Transportation Research B, 35, 677–693.

Cameron, C., and P. Trivedi (2005): Microeconometrics. Cambridge University Press,

New York.

Cappellari, L., and S. Jenkins (2003): “Multivariate probit regression using simulated

maximum likelihood,” The Stata Journal, 3, 278–294.

(2006): “Calculation of multivaraite normal probabilities by simulation,” mimeo.

Gould, W., J. Pitbaldo, and W. Sribney (2003): Maximum Likelihood Estimation

with Stata. Stata Corporation, Texas.

Haan, P. (2005): “State Dependence and Female Labor Supply in Germany: The Exten-

sive and the Intensive Margin.,” DIW Discussion Paper, 538.

Rabe-Hesketh, S., A. Skrondal, and A. Pickles (2002): “Reliable estimation of

generalised linear mixed models using adaptive quadrature,” The Stata Journal, 2, 1–

21.

(2004): “GLLAMM Manual, Technical Report,” U.C. Berkeley Division of Bio-

statistics Working Paper Series, Working Paper 160.

Skrondal, A., and S. Rabe-Hesketh (2005): Multilevel and Longitudinal Modelling

Using Stata. Stata Press, College Station, Texas.

14



Train, K. (1999): “Halton Sequences for Mixed Logit,” Working Paper, available from

http://elsa.berkeley.edu/wp/train0899.pdf.

Train, K. (2003): Discrete Choice Models using Simulation. Cambridge University Press,

Cambridge, UK.

Uhlendorff, A. (2006): “From no pay to low pay and back again? Low pay dynamics

in West-Germany,” Mimeo.

15



Table 1: One random intercept: Maximum Simulated Likelihood

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

tby= 2
sex 0.543 0.146 0.551 0.146 0.549 0.146 0.550 0.146 0.550 0.146 0.550 0.146
constant 0.685 0.141 0.598 0.145 0.592 0.146 0.592 0.145 0.592 0.146 0.591 0.145
tby= 3
sex 1.064 0.171 1.072 0.171 1.070 0.171 1.071 0.171 1.071 0.171 1.070 0.171
constant -0.399 0.160 -0.486 0.163 -0.492 0.164 -0.492 0.164 -0.492 0.164 -0.493 0.164

lnsig1 -0.391 0.146 -0.289 0.154 -0.301 0.155 -0.301 0.159 -0.321 0.163 -0.312 0.162
sig1 0.457 0.133 0.561 0.172 0.547 0.170 0.548 0.174 0.526 0.172 0.536 0.173

Log likelihood -1303.791 -1303.605 -1303.751 -1303.937 -1303.658 -1303.740

Time 00:00:21 00:00:41 00:01:25 00:02:10 00:03:10 00:08:31

Number of Draws 25 50 100 150 200 500

Numbers of Observations: 1313.

Source: http://www.gllamm.org/jspmix.dat

Table 2: One random intercept: Gauss Hermite and Adaptive Quadrature

Coef. Std. Err. Coef Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

tby= 2
sex 0.553 0.146 0.554 0.146 0.549 0.146 0.550 0.146 0.550 0.146 0.550 0.146
constant 0.693 0.146 0.619 0.155 0.593 0.147 0.594 0.145 0.594 0.146 0.594 0.146
tby= 3
sex 1.074 0.171 1.075 0.171 1.070 0.171 1.071 0.171 1.071 0.171 1.071 0.171
constant -0.391 0.165 -0.465 0.172 -0.492 0.166 -0.490 0.163 -0.491 0.164 -0.491 0.164

sig1 0.398 0.101 0.564 0.181 0.530 0.166 0.551 0.178 0.543 0.175 0.544 0.175

Log likelihood -1305.189 -1303.681 -1303.843 -1303.802 -1303.804 -1303.804

Time 00:00:21 00:00:46 00:01:10 00:01:24 00:01:42 00:03:12

Quad. Points 4 8 16 4 (Adaptive) 8 (Adaptive) 16 (Adaptive)

Numbers of Observations: 1313.

Source: http://www.gllamm.org/jspmix.dat
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Table 3: Two random intercepts: Maximum Simulated Likelihood

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

tby =2
sex 0.542 0.145 0.549 0.146 0.546 0.146 0.545 0.146 0.546 0.146 0.546 0.146
constant 0.616 0.142 0.596 0.139 0.577 0.144 0.601 0.140 0.576 0.142 0.593 0.141
tby =3
sex 1.095 0.175 1.105 0.175 1.099 0.175 1.102 0.175 1.101 0.175 1.101 0.175
constant -0.534 0.184 -0.566 0.182 -0.585 0.178 -0.563 0.180 -0.585 0.181 -0.569 0.180

lnsig1 -0.367 0.201 -0.337 0.170 -0.327 0.174 -0.366 0.167 -0.362 0.175 -0.361 0.171
lnsig2 -0.153 0.167 -0.102 0.160 -0.145 0.158 -0.142 0.154 -0.162 0.163 -0.158 0.161
atrho 1.535 0.422 1.615 0.319 1.471 0.320 1.550 0.339 1.487 0.353 1.496 0.346

sig1 0.479 0.192 0.510 0.173 0.520 0.181 0.481 0.160 0.484 0.170 0.485 0.166
sig2 0.735 0.246 0.815 0.261 0.749 0.236 0.753 0.231 0.724 0.236 0.729 0.234
cov12 0.54 0.185 0.596 0.189 0.561 0.184 0.550 0.172 0.535 0.181 0.538 0.177
cor 0.911 0.071 0.924 0.047 0.900 0.061 0.914 0.056 0.903 0.065 0.904 0.063

Log likelihood -1299.9 -1299.451 -1299.700 -1299.635 -1299.726 -1299.599

Time 00:00:45 00:01:30 00:03:20 00:04:58 00:06:50 00:20:09

Number of Draws 25 50 100 150 200 500

Numbers of Observations: 1313.

Source: http://www.gllamm.org/jspmix.dat

Table 4: Two random intercepts: Gauss Hermite and Adaptive Quadrature

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

tby =2
sex 0.548 0.145 0.551 0.146 0.546 0.146 0.547 0.146 0.546 0.146 0.546 0.146
constant 0.668 0.142 0.621 0.142 0.595 0.141 0.598 0.140 0.597 0.141 0.597 0.141
tby =3
sex 1.104 0.175 1.105 0.175 1.101 0.175 1.102 0.175 1.101 0.175 1.101 0.175
constant -0.480 0.181 -0.539 0.181 -0.567 0.181 0.564 0.180 -0.565 0.180 -0.565 0.180

sig1 0.352 0.098 0.504 0.169 0.480 0.168 0.489 0.171 0.488 0.170 0.488 0.170
sig2 0.596 0.169 0.752 0.238 0.730 0.234 0.743 0.240 0.739 0.238 0.738 0.238
cov 0.406 0.108 0.560 0.180 0.537 0.177 0.547 0.182 0.545 0.181 0.545 0.181
cor 0.887 - 0.910 - 0.907 - 0.908 - 0.908 - 0.908 -

Log likelihood -1300.950 -1299.482 -1299.681 -1299.663 -1299.664 -1299.665

Time 00:02:47 00:11:38 00:47:41 00:08:16 00:30:38 02:03:12

Quad. Points 4 8 16 4 (Adaptive) 8 (Adaptive) 16 (Adaptive)

Numbers of Observations: 1313.

Source: http://www.gllamm.org/jspmix.dat
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