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1 Introduction

Regression analysis usually aims at estimating the partial effect of a regressor on the

outcome variable, holding effects of other regressors constant. The partial effect of a con-

tinuous regressor is given by the partial derivative of the expected value of the outcome

variable with respect to that regressor. For discrete regressors the effect is usually com-

puted by the difference in predicted values for a given change in the regressor. In the linear

regression model, the partial effect of a regressor is given by the regression coefficient. In

non-linear regression models, such as probit and logit models, the partial effects are more

complicated: they are usually non-linear combinations of all regressors and regression co-

efficients of the model.

When an interaction term of two variables is included in the model, the interaction effect

of the two variables is given by the cross-partial derivative (or difference, in the case of

discrete regressors) of the expectation of the dependent variable with respect to the two

interacted variables. In a linear model this is simply the coefficient on the interaction term.

In a non-linear model, the cross-derivative or difference is usually a non-linear combination

of all regressors and all coefficients of the model. Ai and Norton (2003) and Norton et al.

(2004) derive the formulae of interaction effects of two interacted variables in a logit and

probit model.

In this paper we look at the case of probit and logit models, in which three dummy vari-

ables are included alongside with their pairwise interactions and their triple interaction.

This case occurs when the effect of a binary regressor on a binary dependent variable is

allowed to vary over combinations of two sub-groups. For example, one may be interested

in the way a university degree and the presence of children affect the gender difference in

labor market participation. To this effect, one may run a binary choice model of labor

market participation including dummies for female, university degree and presence of chil-

dren, as well as their pairwise and triple interaction terms1.

We present the partial effects in an analogous way as Ai and Norton (2003) and Norton

et al. (2004). The standard errors of the partial effects can be computed using the delta

method (see e.g. Davidson/MacKinnon 2004, p.202). We implemented the computation of
1A similar application of a probit or logit model with a triple dummy variable interaction term is the

difference-in-difference-in-differences estimator with a binary dependent variable (Gruber 1994, Gruber
and Poterba 1994). However, Puhani (2008) argues that the treatment effect in non-linear difference-in-
differences models is not given by the interaction effect à la Ai and Norton (2003). In fact, computing the
interaction effect à la Ai and Norton (2003) would not ensure that the difference-in-differences treatment
effect is bounded between 0 and 1.
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the partial effects and their standard errors in a companion Stata program inteff3. The

program is available by typing net search inteff3 in Stata, and requires at least Stata

version 9. It covers partial effects in probit and logit models, but only treats interactions

of dummy variables, not of continuous variables.

The paper proceeds as follows. Section 2 derives the partial effects of the three dummy

variables and their interactions in probit and logit models. Section 3 describes the Stata

ado-file inteff3 and presents a short empirical application. Section 4 concludes.

2 The partial interaction effects in probit and logit models

with a triple dummy variable interaction term

The model with a triple dummy variable interaction term is

P (y = 1|x1, x2, x3, x̃) = F (β1x1 + β2x2 + β3x3 + β12x1x2

+β13x1x3 + β23x2x3 + β123x1x2x3 + x̃β̃)

= F (xβ) (1)

where subscripts for observations are dropped for simplicity, y is the binary dependent

variable, x1, x2 and x3 are dummy variables to be interacted, βj are the associated coeffi-

cients, and x̃β̃ denotes the linear combination of all remaining explanatory variables and

coefficients. In the case of a probit model, F is the standard normal cumulative density

function. In the case of a logit model, it is the cumulative density function of the logistic

distribution.

For continuous variables, partial effects are usually computed as the derivative of the de-

pendent variable with respect to the regressor of interest. As the dummies x1, x2 and x3

and their interactions are discrete variables, their partial effects are more appropriately

derived by partial differences rather than partial derivatives. The partial effect of the

dummy variable x1 is then the change in the predicted probability of y = 1 when x1

changes from 0 to 1 and all other variables are held constant at specific values:

∆F (xβ)
∆x1

= F (β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)

−F (β2x2 + β3x3 + β23x2x3 + x̃β̃) (2)
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The effects of of the dummies x2 and x3 can be derived analogously.

The interaction effect of x1 and x2 captures how x2 affects the effect of x1 on y. This is a

second difference, or cross difference, i.e. it is the change of the (first) difference given in

(2), for a change of x2 from 0 to 1:

∆2F (xβ)
∆x1∆x2

= F (β1 + β2 + β3x3 + β12 + β13x3 + β23x3 + β123x3 + x̃β̃)

−F (β1 + β3x3 + β13x3 + x̃β̃)− F (β2 + β3x3 + β23x3 + x̃β̃)

+F (β3x3 + x̃β̃). (3)

The interaction effects of x1 and x3 and of x2 and x3 can be derived in the same way.

The triple interaction effect is a third difference. It is the change of the second difference

in (3) when x3 changes from 0 to 1 and all other variables are held constant at specific

values:

∆3F (xβ)
∆x1∆x2∆x3

= F (β1 + β2 + β3 + β12 + β13 + β23 + β123 + x̃β̃)

−F (β1 + β2 + β12 + x̃β̃)− F (β1 + β3 + β13 + x̃β̃)

−F (β2 + β3 + β23 + x̃β̃) + F (β3 + x̃β̃)

+F (β2 + x̃β̃) + F (β1 + x̃β̃)− F (x̃β̃). (4)

With given estimates of the coefficients of the non-linear model, β̂, equations like (2)-(4)

can be used to derive estimates of the partial effects. As the partial effects are non-

linear functions of the underlying parameters estimates β̂, their standard errors can be

computed using the delta method (see e.g. Davidson/MacKinnon 2004, p.202). Let g(β̂)

be a column vector of k partial effects gi, (i = 1, . . . , k). Then, for the given estimated

covariance matrix of the regression coefficients, V̂(β̂), the covariance matrix of g, can be

estimated according to the delta method by

V̂ (g) = ĜV̂(β̂)Ĝ′, (5)

where Ĝ ≡ G(β̂) is the matrix ∂g(β)/∂β′. The ith row of G(β̂) is the vector of partial

derivatives of the ith function with respect to β̂′ or, in other words, the typical element in

row i and column j of G(β̂) is ∂gi(β)/∂βj (Davidson/MacKinnon 2004, p. 208).

Hence, the method requires the derivatives of the partial effects (of the type shown in

(2)-(4)) with respect to the underlying regression coefficients β. As an example, the
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derivatives of the effect (2) with respect to β1, β12, β123 and a coefficient βj (part of xβ̃)

are represented in the appendix.

We have implemented the computation of the partial effects and their standard errors in

the Stata program inteff3. The program computes partial effects at means, at values

specified by the user, or the average partial effects, which are computed by averaging over

the partial effects for each observation in the sample.

3 The Stata ado-file inteff3 and an empirical application

We illustrate the use of inteff3 by means of a probit regression of labor market participa-

tion2. Ideally we would present an empirical application using data from the German Socio

Economic Panel (GSOEP), a representative household panel data set. As the GSOEP data

is subject to data protection rules that do not allow users to disseminate the data to third

parties, using it would not allow us to submit the data we used to generate the output in

this paper. We therefore present an empirical example with simulated data. The simula-

tion, however, is based on the real GSOEP data.

We start by extracting the following data from the GSOEP waves 2000 to 2006: a dummy

for labor market participation (particip) as the dependent variable; dummies for female

gender (female), university degree (uni) and the presence of children (child) as the main

explanatory variables. From this we generate the following interaction terms:

gen fem_child=female*child

gen fem_uni=female*uni

gen child_uni=child*uni

gen fem_chi_uni=female*child*uni.

As control variables we also extract variables for age and its square (age, age_sq), a

dummy for German nationality (german), six year dummies (year*) and 15 state dum-

mies (state*).

We then include all explanatory variables into a probit regression of labor force partic-

ipation which we run on the GSOEP data covering roughly 87,000 observations. After

that, we reduce the sample size to 2000 and replace all explanatory variables by random

variables with the same mean as the variables observed in the data. Based on these sim-
2The program is available by typing net search inteff3 in Stata, and requires at least Stata version

9. It covers partial effects in probit and logit models, but only treats interactions of dummy variables, not
of continuous variables.
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ulated random variables, we predict the linear combination x′β̂ of the estimated probit

model and add an error term e to it, drawn from a normal distribution with mean zero

and standard deviation .8. We create a simulated dependent variable for labor market

participation that is 1 if x′β̂+e > 0 and 0 otherwise. All output produced in the following

is based on this simulated data, but we will also mention the results obtained with the

real data, to show that the simulated data reproduces those results reasonably well.

The probit model followed by inteff3 gives the following results:

. probit particip female child uni fem_child fem_uni child_uni fem_chi_uni age
> age_sq german year2 year3 year4 year5 year6 year7 state1 state2 state3 state4
> state6 state7 state8 state9 state10 state11 state12 state13 state14 state15
> state16

Iteration 0: log likelihood = -829.64661
Iteration 1: log likelihood = -591.93241
Iteration 2: log likelihood = -573.11604
Iteration 3: log likelihood = -572.0443
Iteration 4: log likelihood = -572.03799
Iteration 5: log likelihood = -572.03799

Probit regression Number of obs = 2000
LR chi2(31) = 515.22
Prob > chi2 = 0.0000

Log likelihood = -572.03799 Pseudo R2 = 0.3105

------------------------------------------------------------------------------
particip | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
female | -.0596092 .265928 -0.22 0.823 -.5808184 .4616
child | .7013859 .2811934 2.49 0.013 .1502569 1.252515
uni | 1.035991 .2525665 4.10 0.000 .5409695 1.531012

fem_child | -1.554207 .3508084 -4.43 0.000 -2.241779 -.8666351
fem_uni | -.3498625 .3218242 -1.09 0.277 -.9806264 .2809015

child_uni | -.5425721 .3414728 -1.59 0.112 -1.211847 .1267023
fem_chi_uni | .5205862 .4196237 1.24 0.215 -.3018611 1.343033

age | .4486498 .0347122 12.92 0.000 .3806152 .5166844
age_sq | -.0053626 .0004532 -11.83 0.000 -.0062509 -.0044744
german | .3952258 .1720125 2.30 0.022 .0580875 .732364
year2 | .0879536 .1183411 0.74 0.457 -.1439907 .3198979
year3 | -.1167532 .1228444 -0.95 0.342 -.3575238 .1240173
year4 | .0254419 .1222224 0.21 0.835 -.2141096 .2649934
year5 | -.0571422 .13155 -0.43 0.664 -.3149754 .200691
year6 | -.1810155 .1152651 -1.57 0.116 -.4069309 .0448998
year7 | -.0859129 .1224446 -0.70 0.483 -.3259 .1540742
state1 | -.0718204 .2473074 -0.29 0.772 -.5565339 .4128931
state2 | .3606021 .1856515 1.94 0.052 -.0032681 .7244723
state3 | .103183 .3880872 0.27 0.790 -.657454 .86382
state4 | -.0520698 .1537476 -0.34 0.735 -.3534096 .2492699
state6 | .2754981 .0993348 2.77 0.006 .0808054 .4701908
state7 | -.263168 .2176327 -1.21 0.227 -.6897202 .1633843
state8 | .0741054 .16948 0.44 0.662 -.2580694 .4062802
state9 | .0641097 .1297169 0.49 0.621 -.1901307 .31835
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state10 | .2997607 .1095528 2.74 0.006 .0850412 .5144802
state11 | -.1825238 .1996686 -0.91 0.361 -.5738671 .2088194
state12 | -.1826433 .2803153 -0.65 0.515 -.7320513 .3667646
state13 | .3395475 .1951523 1.74 0.082 -.0429439 .7220389
state14 | .2726648 .2267348 1.20 0.229 -.1717273 .717057
state15 | -.0041417 .249022 -0.02 0.987 -.4922159 .4839324
state16 | -.0416705 .1900511 -0.22 0.826 -.4141638 .3308228
_cons | -8.49694 1.087946 -7.81 0.000 -10.62928 -6.364605

------------------------------------------------------------------------------

. inteff3

Dummies and Interactions: female, child, uni, fem_child, fem_uni, child_uni, fem_chi_uni.
Control variable: age age_sq german year2 year3 year4 year5 year6 year7 state1 state2
state3 state4 state6 state7 state8 state9 state10 state11 state12 state13 state14
state15 state16, constant term.

Marginal effect at means of probit estimation sample:
------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

female | -.1462466 .0140528 -10.41 0.000 -.1737896 -.1187035
child | -.0442597 .0129668 -3.41 0.001 -.0696741 -.0188452
uni | .1301115 .0236999 5.49 0.000 .0836605 .1765624

fem_child | -.217242 .0257771 -8.43 0.000 -.2677641 -.1667198
fem_uni | .1391947 .0445354 3.13 0.002 .051907 .2264824

child_uni | -.0120989 .0471321 -0.26 0.797 -.1044761 .0802782
fem_chi_uni | .2260262 .0878555 2.57 0.010 .0538327 .3982198
------------------------------------------------------------------------------

The effect of the variable female shows that the probablity of women to participate

in the labor market is about 15 percentage points lower than that of men. The default

of inteff3 is to compute partial effects at means. Hence, the gender difference of 15

percentage points applies to a hypothetical average individual with mean values for all

regressors. Having a child is associated with a 4 percentage points lower participation

rate, and having a university degree with a 13 percentage points higher participation rate

for average individuals.

For the two-fold interaction terms there are two possible interpretations. The interac-

tion effect -.22 of female and children (fem_child) means that (i) the gender difference is

22 percentage points larger for average individuals with children compared to similar indi-

viduals without children, or that (ii) the negative effect of having a child on participation

is by 22 percentage points stronger for females than it is for males3.
3When using the term effect, which conveys the notion of causality, we implicitly assume that there

is no reversed causality (e.g. labor market participation having an effect on fertility) and no unobserved
heterogeneity that would bias our effects from being causal.

7



The effect for fem_uni shows that (i) for university graduates the gender difference is

14 percentage points smaller than for non-graduates, or (ii) for women the positive effect

of a university degree on participation is 14 percentage points stronger than it is for men.

The insignificant effect of child_uni implies that (i) the effect of children on partici-

pation does not seem to depend on the university degree of the parents, or (ii) the effect of

the university degree on participation does not seem to depend on the presence of children.

One possible interpretation of the triple interaction term is as follows. The effect of

children on the gender difference in participation is by about 23 percentage points weaker

for women with a university degree compared to women without such a degree. While the

presence of children does increase the gender gap in participation (fem_child), it does

less so for more highly educated women (fem_chi_uni). This empirical result makes sense

economically, because more highly educated women usually have higher opportunity costs

(higher wages, more interesting jobs) from not participating in the labor market4.

When not using the simulated but the real data set the partial effects are qualitatively

similar but different in size. They are -.21 for female, -.11 for child, .16 for uni, -.38 for

fem_child, .03 for fem_uni, .006 for child_uni and .07 for fem_chi_uni.

Next we compare the output of inteff3 after probit with that of a linear probability

model.

. reg particip female child uni fem_child fem_uni child_uni fem_chi_uni age
> age_sq german year2 year3 year4 year5 year6 year7 state1 state2 state3 state4
> state6 state7 state8 state9 state10 state11 state12 state13 state14 state15
> state16

Source | SS df MS Number of obs = 2000
-------------+------------------------------ F( 31, 1968) = 22.06

Model | 64.1308182 31 2.06873607 Prob > F = 0.0000
Residual | 184.528682 1968 .093764574 R-squared = 0.2579

4Here we have chosen to interpret the triple interaction term by asking how a university degree changes
our interpretation (i) of the coefficient fem_child. But there are all together 6 possibilities of interpreting
the triple interaction term, because for each possible interpretation of a pairwise interaction term we can
ask how it changes with the remaining dummy variable. For example, we could have asked how the presence
of children affects the interpretation (ii) of fem_uni. Interpretation (ii) of fem_uni was that the positive
effect of a university degree on participation is about 14 percentage points stronger for women than it is for
men. The triple interaction term then means that this male-female difference in the effect of a university
degree is stronger by 23 percentage points if children are present than if they are not present.
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-------------+------------------------------ Adj R-squared = 0.2462
Total | 248.6595 1999 .124391946 Root MSE = .30621

------------------------------------------------------------------------------
particip | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
female | -.0110096 .0513559 -0.21 0.830 -.1117274 .0897081
child | .1211511 .0487532 2.48 0.013 .0255379 .2167644
uni | .1457012 .0427593 3.41 0.001 .0618428 .2295595

fem_child | -.363491 .0652491 -5.57 0.000 -.4914556 -.2355263
fem_uni | -.0312669 .056697 -0.55 0.581 -.1424594 .0799257

child_uni | -.1126186 .0537618 -2.09 0.036 -.2180547 -.0071826
fem_chi_uni | .1911874 .0724121 2.64 0.008 .049175 .3331998

age | .0944234 .0058371 16.18 0.000 .0829759 .105871
age_sq | -.0011218 .0000759 -14.78 0.000 -.0012706 -.000973
german | .0533853 .0247257 2.16 0.031 .004894 .1018766
year2 | .0126909 .0191028 0.66 0.507 -.0247729 .0501547
year3 | -.0222891 .0195318 -1.14 0.254 -.0605943 .016016
year4 | .0137031 .019895 0.69 0.491 -.0253144 .0527206
year5 | -.0065777 .0203906 -0.32 0.747 -.046567 .0334117
year6 | -.0329195 .0183662 -1.79 0.073 -.0689388 .0030998
year7 | -.0119072 .0196214 -0.61 0.544 -.0503881 .0265736
state1 | .0006947 .0404722 0.02 0.986 -.0786782 .0800676
state2 | .0571352 .0346434 1.65 0.099 -.0108064 .1250768
state3 | .0205673 .0661412 0.31 0.756 -.1091468 .1502815
state4 | -.009332 .0243071 -0.38 0.701 -.0570023 .0383383
state6 | .0508116 .0169564 3.00 0.003 .0175572 .084066
state7 | -.0348525 .0292841 -1.19 0.234 -.0922835 .0225786
state8 | .0241543 .0289179 0.84 0.404 -.0325585 .0808672
state9 | .0090815 .0214628 0.42 0.672 -.0330108 .0511737
state10 | .0530236 .0190447 2.78 0.005 .0156737 .0903734
state11 | -.0464125 .0310093 -1.50 0.135 -.107227 .0144021
state12 | -.0347191 .0425799 -0.82 0.415 -.1182254 .0487873
state13 | .0665878 .0358917 1.86 0.064 -.0038019 .1369774
state14 | .0573612 .0410576 1.40 0.163 -.0231596 .1378821
state15 | -.0053813 .0421607 -0.13 0.898 -.0880656 .0773029
state16 | -.0006873 .0294542 -0.02 0.981 -.0584521 .0570775
_cons | -1.222554 .1779831 -6.87 0.000 -1.571609 -.8734984

------------------------------------------------------------------------------

In the linear regression, the coefficient on female is the partial effect for those indi-

viduals for whom all variables interacted with female take on a value of zero. Hence -.01

is the partial gender effect for individuals without university degree and without children.

The gender effect for individuals with children but without university degree is obtained

by summing up coefficients on female and fem_child. It is -.01-.36 = -.37. The gender

effect for individuals with children and with university degree is -.01-.36-.03+.19 = -.21.

The effect of -.15 of the previous inteff3 output lies somewhere in between these values.

This is normal, as we expect the effect for an average individual computed by inteff3 to

be some weighted average of -.01, -.37 and -.21.
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If we wanted to use inteff3 to compute the gender effect for individuals without

children and without university degree, and with mean values on all other regressors, then

we have to set the regressor values in inteff3 manually:

. inteff3, at(0.5225 0 0 39.2785 1636.299 0.085 0.846 0.8545 0.8595
> 0.867 0.8305 0.855 0.97 0.9585 0.989 0.9115 0.7915 0.9405 0.9395 0.8825 0.8445
> 0.9475 0.973 0.9615 0.971 0.9725 0.942 1)

Dummies and Interactions: female, child, uni, fem_child, fem_uni, child_uni, fem_chi_uni.
Control variable: age age_sq german year2 year3 year4 year5 year6 year7 state1 state2
> state3 state4 state6 state7 state8 state9 state10 state11 state12 state13 state14
> state15 state16, constant term.

Marginal effect at following values:

__000009[1,3]
female child uni

Values .5225 0 0

__000008[1,25]
age age_sq german year2 year3 year4 year5

Values 39.2785 1636.299 .085 .846 .8545 .8595 .867

year6 year7 state1 state2 state3 state4 state6
Values .8305 .855 .97 .9585 .989 .9115 .7915

state7 state8 state9 state10 state11 state12 state13
Values .9405 .9395 .8825 .8445 .9475 .973 .9615

state14 state15 state16 _cons
Values .971 .9725 .942 1
------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

female | -.0150696 .0669203 -0.23 0.822 -.1462311 .1160918
child | -.0294894 .0455244 -0.65 0.517 -.1187156 .0597367
uni | .134705 .033966 3.97 0.000 .0681328 .2012772

fem_child | -.410151 .0840221 -4.88 0.000 -.5748312 -.2454708
fem_uni | -.0168247 .0682101 -0.25 0.805 -.150514 .1168646

child_uni | -.0120989 .0471321 -0.26 0.797 -.1044761 .0802782
fem_chi_uni | .2260262 .0878555 2.57 0.010 .0538327 .3982198
------------------------------------------------------------------------------

Here we get -.015 for the effect of female, which is close to the OLS coefficient in the

earlier linear regression.

A naive approach to computing the interaction effects might be using mfx after probit,

or dprobit. However, these commands do not deliver the desired interaction effects:

. dprobit particip female child uni fem_child fem_uni child_uni fem_chi_uni
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> age age_sq german year2 year3 year4 year5 year6 year7 state1 state2 state3
> state4 state6 state7 state8 state9 state10 state11 state12 state13 state14
> state15 state16

Iteration 0: log likelihood = -829.64661
Iteration 1: log likelihood = -591.93241
Iteration 2: log likelihood = -573.11604
Iteration 3: log likelihood = -572.0443
Iteration 4: log likelihood = -572.03799
Iteration 5: log likelihood = -572.03799

Probit regression, reporting marginal effects Number of obs = 2000
LR chi2(31) = 515.22
Prob > chi2 = 0.0000

Log likelihood = -572.03799 Pseudo R2 = 0.3105

------------------------------------------------------------------------------
particip | dF/dx Std. Err. z P>|z| x-bar [ 95% C.I. ]
---------+--------------------------------------------------------------------
female*| -.0082118 .0365744 -0.22 0.823 .5225 -.079896 .063473
child*| .1093669 .0496024 2.49 0.013 .6045 .012148 .206586
uni*| .2190083 .0708413 4.10 0.000 .809 .080162 .357855

fem_ch~d*| -.3261532 .0967815 -4.43 0.000 .3055 -.515842 -.136465
fem_uni*| -.0506015 .0487959 -1.09 0.277 .4175 -.14624 .045037
child_~i*| -.0766267 .0501354 -1.59 0.112 .4875 -.17489 .021637
fem_ch~i*| .0595931 .0400244 1.24 0.215 .243 -.018853 .13804

age | .061917 .0054205 12.92 0.000 39.2785 .051293 .072541
age_sq | -.0007401 .0000695 -11.83 0.000 1636.3 -.000876 -.000604
german*| .0428215 .0142196 2.30 0.022 .085 .014952 .070691
year2*| .0126869 .0178172 0.74 0.457 .846 -.022234 .047608
year3*| -.0151676 .0150066 -0.95 0.342 .8545 -.04458 .014245
year4*| .0035582 .0173291 0.21 0.835 .8595 -.030406 .037523
year5*| -.0076483 .0170656 -0.43 0.664 .867 -.041096 .0258
year6*| -.0228957 .0133482 -1.57 0.116 .8305 -.049058 .003266
year7*| -.0113402 .0154457 -0.70 0.483 .855 -.041613 .018933
state1*| -.0094331 .0308558 -0.29 0.772 .97 -.069909 .051043
state2*| .0626863 .0392473 1.94 0.052 .9585 -.014237 .13961
state3*| .0153135 .0617368 0.27 0.790 .989 -.105688 .136315
state4*| -.0069645 .0199152 -0.34 0.735 .9115 -.045998 .032069
state6*| .0427229 .0171951 2.77 0.006 .7915 .009021 .076425
state7*| -.0305984 .0209289 -1.21 0.227 .9405 -.071618 .010422
state8*| .010721 .0256829 0.44 0.662 .9395 -.039617 .061059
state9*| .0091683 .0192088 0.49 0.621 .8825 -.02848 .046817
state10*| .0479791 .0200612 2.74 0.006 .8445 .00866 .087298
state11*| -.0223311 .0215186 -0.91 0.361 .9475 -.064507 .019845
state12*| -.0221846 .0296781 -0.65 0.515 .973 -.080353 .035984
state13*| .0583521 .040506 1.74 0.082 .9615 -.021038 .137742
state14*| .0451065 .0440765 1.20 0.229 .971 -.041282 .131495
state15*| -.00057 .0341713 -0.02 0.987 .9725 -.067545 .066405
state16*| -.0055981 .0248373 -0.22 0.826 .942 -.054278 .043082
---------+--------------------------------------------------------------------
obs. P | .8545
pred. P | .9274498 (at x-bar)
------------------------------------------------------------------------------
(*) dF/dx is for discrete change of dummy variable from 0 to 1

z and P>|z| correspond to the test of the underlying coefficient being 0
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For example, here the effect associated with the triple interaction is .06 and it is not

statistically significant. Such a result would have suggested the conclusion that the increase

of the gender difference in participation due to the presence of children does not depend

on education. The command dprobit computes

∆3F (xβ)
∆(x1x2x3)

= F (β1 + β2 + β3 + β12 + β13 + β23 + β123 + x̃β̃)

−F (β1 + β2 + β3 + β12 + β13 + β23 + x̃β̃). (6)

In the empirical example we were interested in the interaction effect given in (4). The

effect in (6) is very different. In general there is no guarantee that (4) and (6) are of equal

sign5.

Above we demonstrated the use of inteff3 to compute effects at means or at certain

regressor values. The program also allows to compute the partial effects for each individual

in the sample and to average these effects. According to Greene (2003, p. 668) this is

more advisable than just computing the effect at means. This is possible with inteff3 by

specifying:

. inteff3, average pex1(pe1) pex1x2x3(pe123)

Dummies and Interactions: female, child, uni, fem_child, fem_uni, child_uni, fem_chi_uni.
Control variable: age age_sq german year2 year3 year4 year5 year6 year7 state1 state2
> state3 state4 state6 state7 state8 state9 state10 state11 state12 state13 state14
> state15 state16, constant term.

Average marginal effect:
------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

female | -.1639777 .0132023 -12.42 0.000 -.1898537 -.1381017
child | -.079771 .0130652 -6.11 0.000 -.1053784 -.0541637
uni | .1274121 .0194422 6.55 0.000 .0893061 .1655182

fem_child | -.212257 .0255793 -8.30 0.000 -.2623915 -.1621226
fem_uni | .0843261 .0387943 2.17 0.030 .0082906 .1603616

child_uni | -.0075491 .0397794 -0.19 0.849 -.0855153 .0704171
fem_chi_uni | .1850893 .5207804 0.36 0.722 -.8356215 1.2058
------------------------------------------------------------------------------

The estimates now differ to some extent from those computed at means6.

A more complete description of the sample distribution of the estimated effects, than
5Equation (6) is useful, however, because in a difference-in-difference-in-differences model it represents

the treatment effect (see Puhani 2008).
6When not using the simulated but the real data set the results are: -.19 for female, -.11 for child,

.14 for uni, -.34 for fem_child, .02 for fem_uni, -.01 for child_uni and .06 for fem_chi_uni, all except
fem_uni and child_uni being significant at the 1% level.
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just reporting the average, would be to report quantiles or to graph the distribution of

the effects. The options pex1() and pex1x2x3() used here save the individual effects of

equations (2) and (4) as variables and allow to describe or graph their distribution. The

histograms for the effects saved as pe1 (partial effect of female) and pe123 (partial effect

of fem_chi_uni) uncover a large amount of heterogeneity:

histogram pe1 histogram pe123

 

4 Conclusion

This paper has derived the partial effects in probit and logit models with three interacted

dummy variables. The computation of the partial effects and their standard errors has been

implemented in the Stata program inteff3 which applies the delta method to compute

the standard errors of the partial effects. We have demonstrated the use of inteff3 by

means of a probit regression of labor market participation. We have included dummies

for female gender, university degree, presence of children, as well as their pairwise and

triple interaction terms. This allows to analyse the way a university degree and the

presence of children affect the gender difference in labor market participation. We find

evidence consistent with the idea that the presence of children increases the gender gap

in labor market participation, but that this increase is smaller for more highly educated

individuals.

In an analogous way as presented here and as presented in Ai and Norton (2003) and

Norton et al. (2004), the effects can be computed for the case of an interaction of three

continuous variables or for a mixture of continuous and dummy variables.

13



References

[1] Ai, C. and E. C. Norton (2003): Interaction terms in logit and probit models, Eco-

nomics Letters, 80, pp. 123-129.

[2] Davidson, R. and J. MacKinnon (2004): Econometric Theory and Methods, Oxford

University Press, New York.

[3] Greene, W. (2003): Econometric Analysis, Prentice Hall, New Jersey.

[4] Gruber, J. (1994): The Incidence of Mandated Maternity Benefits, The American

Economic Review, Vol. 84, No. 3, pp. 622-641.

[5] Gruber, J. and J. Poterba (1994): Tax Incentives and the Decision to Purchase Health

Insurance: Evidence from the Self-Employed, The Quarterly Journal of Economics,

Vol. 109, No. 3, pp. 701-733.

[6] Norton, E. C., H. Wang and C. Ai (2004): Computing interaction effects and standard

errors in logit and probit models, The Stata Journal, 4(2), 154-167.

[7] Puhani, P. (2008): The Treatment Effect, the Cross Difference, and the Interaction

Term in Nonlinear ”Difference-in-Differences” Models, IZA Discussion Paper No. 3478.

Appendix

Let g1 denote the difference ∆F (xβ)
∆x1

given in (2). The derivatives of g1 with respect to β1,

β12, β123 and a coefficient βj (part of xβ̃) are given by:

∂g1

∂β1
= f(β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)

∂g1

∂β12
= f(β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)x2

∂g1

∂β123
= f(β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)x2x3

∂g1

∂βj
= (f(β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)

−f(β2x2 + β3x3 + β23x2x3 + x̃β̃))xj
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