Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Energy
Economics

CONTENTS
Energy Economics.

The determinasts. of household energy demand in rural Begsg: Can

7 Jisgchon and K. Komard

Factors affecting weod energy consumption by US. households
. Song. X Agular, S8 Sffey ond ME. Goemd!

Estimation of clasticities for domestic encrgy demand in Mozaibique
MAFSR Arthur, CA Bend and 2 Wilkson

Uetun energy tranition and technolegy adoption: The case of Tigral nonhern
Erhiogiz

Z Gebrecgriabher, A Mekonnen, M. Kassie aod G. K3hlin

AN, BuShohr and MK Wollgerient

poneneial for

Iybrid medeling
LG, Girowder, C. Gofvarck and P Quirion.

Congeamer y-ellicicncy
¥ Koo, €5 Kim, J Hong, - Chol and | Lee

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Energy Economics 34 (2012) 461-467

journal homepage: www.elsevier.com/locate/eneco

Contents lists available at SciVerse ScienceDirect

Energy Economics

Energy
Economics

Heterogeneity in the rebound effect: Further evidence for Germany

Manuel Frondel *><*, Nolan Ritter 2, Colin Vance *¢

2 RWI

b Ruhr University Bochum, Germany

€ Ruhr Graduate School in Economics, Germany
4 Jacobs University Bremen, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 13 April 2011

Received in revised form 18 August 2011
Accepted 23 October 2011

Available online 6 November 2011

JEL classification:

Rebound effects measure the behaviorally induced offset in the reduction of energy consumption following
efficiency improvements. Using both panel estimation and quantile regression methods on household travel
diary data collected in Germany between 1997 and 2009, this study investigates the heterogeneity of the re-
bound effect in private transport. With the average rebound effect being in the range of 57% to 62%, our re-
sults are in line with a recent German study by Frondel, Peters, and Vance (2008), but are substantially
larger than those obtained from other studies. Furthermore, our quantile regression results indicate that

D13 the magnitude of estimated fuel price elasticities - from which rebound effects can be derived - depends in-
Q41 versely on the household's driving intensity: households with low vehicle mileage exhibit fuel price elastic-
ities, and hence rebound effects, that are significantly larger than those for households with high vehicle
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1. Introduction

To maintain climate protection policy on track, the European Com-
mission enacted new legislation in 2009 under the auspices of Regu-
lation No. 443/2009, which sets limits on the allowable per-kilometer
CO2 emissions of newly registered automobiles. This regulation in-
cludes legally codified targets for the maximum CO2 discharges per
kilometer that increase with the mass of vehicles. While non-
compliance with the allowable emissions will result in heavy fines
starting in 2012, the Commission expects that this measure will in-
duce considerable incentives for the development of fuel-saving tech-
nologies (Frondel et al., 2011).

Irrespective of the directive's effectiveness in increasing the fuel
efficiency of automobiles, a critical issue in gauging its merits con-
cerns how consumers adjust to altered cost of car travel. While higher
fuel prices, as implied by soaring oil prices or increased taxes, raise
these costs, improved efficiency effectively reduces them, thereby
stimulating the demand for car travel. Such demand increases are re-
ferred to as the rebound effect, as it offsets - at least partly — the re-
duction in energy demand that results from an increase in efficiency.

Though the basic mechanism underlying the rebound effect is
widely accepted, its magnitude remains a contentious question (e. g.,
Binswanger, 2001; Brookes, 2000; Greening et al., 2000; Sorrell
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and Dimitroupoulos, 2008). A survey by Graham and Glaister
(2004), for example, cites mean fuel demand elasticities - from
which rebound effects can be derived - varying between —0.25 in
the short-run and —0.77 in the long-run. More recent work by West
(2004) and Frondel et al. (2008), who use household-level pooled
and panel data from the U.S. and Germany, puts the estimated re-
bound effect at the high end of this range, averaging between 87%
and 57%, respectively. In a subsequent article, Frondel and Vance
(2010a) employ person-, rather than household-level data to investi-
gate individual mobility behavior, finding fuel price elasticity esti-
mates ranging between —0.50 and — 0.45.

Aside from differences in the level of data aggregation, with the
vast majority of gasoline demand studies being based on aggregate
data at the country or sub-national level (Graham and Glaister,
2002:10), and in the estimation methods employed, one major rea-
son for the diverging results of the empirical studies is that there is
no unanimous definition of the direct rebound effect. Instead, several
definitions have been employed in the economic literature as deter-
mined by the availability of price and efficiency data (Sorrell and
Dimitroupoulos, 2008). For this reason, Frondel et al. (2008) estimate
the rebound effect using three common definitions, and find robust
results across both definitions and panel estimation methods.

The major contribution of the present study is to advance this line
of inquiry by drawing on travel-diary data collected in Germany be-
tween 1997 and 2009 and investigate the heterogeneity of the re-
bound effect. Inspired by Wadud et al., 2010), who use interaction
terms to examine heterogeneity in the fuel price elasticity of gasoline
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consumption with respect to (1) household income, (2) the existence
of both multiple vehicles and (3) multiple earners within a house-
hold, we employ both panel estimation and quantile regression
methods to capture the heterogeneity in the rebound effect, depend-
ing on the households’ traveling intensity and other household
characteristics.

This research is in line with recent studies suggesting significant het-
erogeneity in the fuel price sensitivity of different socio-economic
groups or geographic areas (e. g. Kayser, 2000; West, 2004; Frondel
and Vance, 2010a). It seems plausible, for instance, that low-income
households that are located in urban areas may be more sensitive to
fuel price changes, since they can more easily switch to other transport
modes than households living rural areas. On the other hand, due to in-
come constraints, low-income households may already be driving as lit-
tle as possible, so that they are unable to further reduce their driving
level, resulting in a low fuel price elasticity (Kayser, 2000).

Using data from the German Mobility Panel, this study builds on this
empirical literature and the recent analysis of direct rebound effects by
Frondel et al. (2008) in several respects. First, the robustness and sensi-
tivity of the results of the former study is checked by employing four ad-
ditional waves of data for the years 2006 to 2009. Second, expanding on
the single-car focus of Frondel et al. (2008), the data set analyzed here in-
cludes multiple-vehicle households, thereby allowing us to explore the
sensitivity of the estimates to their inclusion. Third, we add a fourth def-
inition of the rebound effect relying on the fuel price elasticity of travel
demand and argue that for empirical reasons, the rebound should be
preferably estimated on this basis. Finally, in addition to providing for av-
erage effects across all types of households, which serve as a reference
point, the estimates using quantile regression methods indicate that
the magnitude of the estimated rebound effect depends inversely on
the household's driving intensity: households with low vehicle mileage
exhibit rebound effects that are significantly larger than those for house-
holds with high vehicle mileage.

The following section provides for a discussion on the choice of ei-
ther of the common definitions of the direct rebound effect for esti-
mation purposes. Section 3 presents a concise description of
quantile regression approaches, building the basis for the empirical
estimation. Section 4 describes the panel data base used in the esti-
mation, followed by the presentation and interpretation of the results
in Section 5. The last section summarizes and concludes.

2. A variety of rebound definitions

Along the lines of Sorrell and Dimitroupoulos (2008), we now cat-
alogue three widely known definitions of the direct rebound effect
that are based on elasticities with respect to changes of either effi-
ciencies, service- or fuel prices. First, the most natural definition of
the direct rebound effect is based on the elasticity of the demand
for a particular energy service, such as conveyance, with respect to ef-
ficiency (see e. g. Berkhout et al., 2000). This definition reflects the
relative change in service demand s due to a percentage increase in
efficiency '

olns

Definition 1 Mu(S) = Al

(M

! In line with the economic literature (e. g. Binswanger, 2001:121), energy efficiency
is defined here by u = £ > 0, where the efficiency parameter y characterizes the tech-
nology with which a service demand s is satisfied and e denotes the energy input
employed for a service such as mobility. For the specific example of individual convey-
ance, parameter p designates fuel efficiency, which can be measured in terms of vehicle
kilometers per liter of fuel input. The efficiency definition reflects the fact that the
higher the efficiency p of a given technology, the less energy e =s/u is required for
the provision of a service. The above efficiency definition assumes proportionality be-
tween service level and energy input regardless of the level — a simplifying assumption
that may not be true in general, but provides for a convenient first-order approxima-
tion of the relationship of s with respect to e.

Second, instead of 7),(s), empirical estimates of the rebound effect
are frequently based on the negative of the price elasticity of service
demand, 7, (s) (e.g. Binswanger, 2001). As is shown, e. g, by
Frondel et al. (2008:161), both rebound definitions are equivalent if,
first, fuel prices p. are exogenous and, second, service demand s solely
depends on the service price ps: = p./u, which is proportional to the
fuel price pe:

Definition 2 :1),(s) = =1, ($). (2)

That the rebound may be captured by — 1), (s) reflects the fact that
the direct rebound effect is, in essence, a price effect, which works
through shrinking service prices ps.

Third, empirical estimates of the rebound effect are sometimes
necessarily based on the negative own-price elasticity of fuel con-
sumption, — 1), (e), rather than on —1, (s), because data on fuel con-
sumption and fuel prices is more commonly available than on service
demand and service prices.

Definition 3 :1,(s) = — T, (€)- (3)

Definitions 2 and 3, however, are only equivalent if the energy ef-
ficiency p is constant (Frondel et al., 2008:161). That is, the rebound
definition given by —m),, (e) is equivalent to that given by 7)(s) only
if three preconditions hold true: (1) fuel prices p. are exogenous,
(2) service demand s solely depends on the service price ps, and (3)
efficiency p is constant.

To analyze the heterogeneity of the rebound effect across house-
holds exhibiting a variety of socio-economic characteristics, we
focus here on a fourth definition that is given by the negative of the
fuel price elasticity 7, (s) of the demand for transport services s.
This focus is warranted for several reasons. First, while the most nat-
ural definition of the direct rebound effect is based on the elasticity of
transport demand to efficiency pt (see Definition 1), this definition is
frequently not applicable, because in many empirical studies efficien-
cy data is not available or the data provides only limited variation in
efficiencies (Sorrell et al., 2009:1359).

Even more disconcerting is that observed efficiency increases may
be endogenous, rather than reflecting autonomous efficiency im-
provements. This is the case, for instance, if a more efficient car is pur-
chased in response to a job change that results in a longer commute.
Hence, due to the likely endogeneity of fuel efficiency (see e. g. Sorrell
et al.,, 2009:1361), it would be wise to refrain from including this var-
iable in any model specification aiming at estimating the response to
fuel price effects, as fuel efficiency may be a bad control (Angrist and
Pischke, 2009:63).2

Rather than excluding u from the analysis, alternative approaches
are to estimate simultaneous equations systems that explain vehicle
miles traveled, fuel efficiency, and vehicle numbers at once or instru-
ment variable (IV) estimations. As we have no instrument at hand, we
are unable to employ IV methods to cope with the endogeneity of p,
nor are we able to estimate simultaneous equations systems due to
data unavailability. In effect, we instead pursue the reduced form of
such a simultaneous equations system.

Another problem emerging from the likely endogeneity of the ef-
ficiency p is that it contaminates the rebound definition based on the
negative of the service demand elasticity 7, (s) with respect to service
price ps, which is given by ps = p./p. This highlights a handicap of Def-
inition 2, namely that service prices represent a conglomerate of

2 Equally important with respect to fuel price responses is to note that if technical
fuel efficiency were to be included in the estimation specification, the analysis is con-
ditional on being locked to the same vehicle, thereby holding technical efficiency con-
stant. This implies that only one scenario of responses to fuel prices is all that is
allowed, that of driving the same car, whereas driving behavior will change for numer-
ous reasons in case of fuel price increases, most importantly due to the purchase of a
new, more efficient car.
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efficiency and fuel prices, while more meaningful estimates of the re-
bound are based on estimations in which fuel-price and efficiency ef-
fects are strictly separated.

The rebound definition that is based on the own-price elasticity of
fuel consumption, 7, (e), is the most restrictive of these three defini-
tions, as it requires the validity of three preconditions, rather than
merely two of them, as is the case with rebound definition —,(s).
Furthermore, in contrast to transport service demand s, the depen-
dent variable e underlying definition —1, (e) explicitly depends on
efficiency . For example, fuel consumption e would ceteris paribus re-
duce to half if efficiency pwere to be doubled. This example illustrates
that the likely endogenous variable p needs to be included in any
model specification for estimating 1), (e), thereby potentially biasing
the empirical results.

For these reasons, we focus here on a fourth rebound definition
that is based on the negative of the fuel price elasticity of transport
demand, 7, (s):

Definition 4 : 1),(s) = =1, (s). (4)

It can be shown that —m, (s) is equivalent to 7),(s) under
the same assumptions as the rebound definition given by
—p,(€).

In sum, although theory would favor estimating the efficiency
elasticity 7),(s) to capture the rebound, the most promising empirical,
but indirect way to elicit the rebound effect is based on the estimation
of fuel price elasticities, as fuel prices typically exhibit sufficient vari-
ation and, in contrast to fuel efficiency, can be regarded as parameters
that are largely exogenous to individual households. Among these
fuel price elasticities, the discussion provided in this section suggests
selecting the fuel price elasticity of transport demand, 7, (s), that is,
Definition 4 for estimating the rebound effect. In contrast to the
other definitions, fuel efficiency p is not necessarily relevant for esti-
mation the rebound according to Definition 4, so that it cannot be
undermined by p's likely endogeneity.

3. Methodology

In line with our focus, we estimate the following model specifica-
tion, where the logged monthly vehicle-kilometers traveled, In(s), is
regressed on logged fuel prices, In(p.), and a vector of control vari-
ables x described in detail in the subsequent section:

In(sy) = g + @, I (Peie) + O Xig + & + V. (5)

Subscripts i and t are used to denote the observation and time pe-
riod, respectively. §; denotes an unknown individual-specific term,
and vy is a random component that varies over individuals and
time. On the basis of this specification, Definition 4 tells us that the re-
bound effect is obtained by the negative estimate of the coefficient o,
of the logged fuel price. For the sake of comparison, Section 5 also
presents the results of those specifications that pertain to the Defini-
tions 1-3, differing from (5) in either the dependent variable (Defini-
tion 3) or the inclusion of efficiency p (Definition 1), or the inclusion
of service price ps (Definition 2), rather than the fuel price pe.

To provide a reference point for the results obtained from the
quantile regression approach, we estimate specification (5) using
panel estimation methods (see e. g. Frondel and Vance, 2010b, for a
discussion). While the fixed-effects estimator may be a potential al-
ternative, we choose to employ random-effects methods, as the
fixed-effects estimator fails to efficiently estimate the coefficients of
time-persistent variables, i. e., variables that do not vary much within
a household over time (Wadud et al., 2010:55). Not least, random-
effects methods also allow for the estimation of coefficients of time-
invariant variables, which is precluded by the fixed-effects estimator.

One potentially restrictive feature of both OLS and panel estima-
tion methods is that they focus on the conditional expectation func-
tion (CEF),

E(In(s;|pe. Xir)) = Qg + 0ty In(Pyie) + 06 Xy, (6)

thereby yielding a uniform rebound effect given by the negative of
the coefficient «, . Quantile regression approaches, by contrast, aim
at providing a more complete picture of the relationship between
the dependent variable and the regressors at different points in the
conditional distribution of the dependent variable, which allows for
more flexibility in the estimation of rebound effects:

Q. (In(silpe. X)) = (T) +t, (T)In(Peyr) + 04 () Xy + F ' (T), (7

where 7 may take on values between zero and unity and specifies the
percentile in the distribution of distance traveled. Q-(.|.) denotes the
conditional quantile function (CQF), F;, ™~ 1(.) is the inverse of the dis-
tribution function of &, and «, () indicates the variability in the
households’ responses to fuel price changes, depending upon the
level of distance traveled. In short, the most attractive feature of
quantile regression methods is that they generally provide for a richer
characterization of the data, as these methods allow us to study the
impact of a regressor such as fuel prices on the full distribution of
the dependent variable or any particular percentile, not just the con-
ditional mean.

For 7=0.5, for instance, Qg s(In(s|pe,X) designates the median of
the logged distance traveled conditional on fuel prices p. and covari-
ates X. In this special case of a median regression, estimates of the pa-
rameters of quantile regression model (7) result from the
minimization of the sum of the absolute deviations, [Qys—Qqsl,
where Q5 denotes the prediction for the dependent variable based
on the median regression. This is perfectly in line with the well-
known statistical result that it is the median that minimizes the
sum of the absolute deviations of a variable, whereas it is the mean
that minimizes the sum of squared residuals, being a special case of
OLS estimation. It is also well-known that the median is more robust
to outliers than the mean. This property translates to both median
and quantile regressions in general, which have the advantage that
they are more robust to outliers than OLS regression methods. In
fact, OLS regressions can be inefficient when the dependent variable
has a highly non-normal distribution.>

More generally, for arbitrary 7€ (0,1), the parameter estimates
are obtained by solving the following weighted minimization prob-
lem:

min 2 Tlrl+ 2 (1=7)ryl, (8)
>0 ;<0

a(7).0, (7).0x(T)

where underpredictions r; := Q,(y;|X;)—Q(y;|X;) > O are penalized
by 7 and overpredictions r;<0 by 1—7. This is reasonable, as for
large T one would not expect low estimates Q, and vice versa, so
that these incidences have to be penalized accordingly. Just as OLS
fits a linear function to the dependent variable by minimizing the
expected squared error, quantile regression fits a linear model using
the generally asymmetric loss function p (r):=1(r>0) 7"|r|+
1(r<0)- (1—7)"|r]), where r:=Q,—Q, and the indicator function
1(r>0) indicates positive residuals r and 1(r<0) non-positive resid-
uals, respectively. Loss function p(r) is also called a “check function”,
as its graph looks like a check-mark. Minimization problem (8) is set

3 Further, rather theoretical advantages of quantile regression methods are, first,
that, unlike OLS, quantile regression estimators do not require the existence of the con-
ditional expected value for consistency. Second, quantile regression is equivariant to
monotone transformations. That is, the quantiles of any monotone transformation
h(y) of y equal the transformed quantiles of y: Q-(h(y)) =h(Q-(y)). This property gen-
erally does not hold for the mean: E(h(y)) #h(E(y)).
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up as a linear programming problem and can thus be solved by linear
programming techniques (Koenker, 2005). Variances can be estimat-
ed using a method suggested by Koenker and Bassett (1982), but
bootstrap methods are often preferred and are used here.

Conditional on p, and x, the CQFs given by Eq. (7) depend on the
distribution of &; via F;, ~ (7). In the special case that errors are inde-
pendent and identically distributed, that is, if F,,~'(7) =F; '(7) and,
hence, the inverse distribution function does not vary across observa-
tions, the CQFs exhibit common slopes, o, (T) =, and ax(T) =,
differing only in the intercepts: () + F; (7). In this case, there is
no need for quantile regression methods if the focus is on marginal ef-
fects, as these are given by the invariant slope parameters. In general,
however, the CQFs Q; will differ at different values 7 in more than just
the intercept and may well be even non-linear in x. This may be the
case if, for example, errors are heteroscedastic, which will be tested
for our empirical example presented in Section 5.

4. Data

The data used in this research is drawn from the MOP (German
Mobility Panel, 2011), an ongoing travel survey that was initiated in
1994. The panel is organized in overlapping waves, each comprising
a group of households surveyed for a period of six weeks in the spring
for three consecutive years. All households that participate in the sur-
vey are requested to fill out a questionnaire eliciting general house-
hold information, person-related characteristics, and relevant
aspects of everyday travel behavior. In addition, respondents record
the price paid for fuel, the liters of fuel consumed, and the kilometers
driven with each visit to a gas station and for every car in the
household.

The data used in this paper cover thirteen years, spanning 1997
through 2009, a period during which real fuel prices rose 1.97% per
annum on average. The resulting sample includes 2165 households,
962 of which appear one year in the data, 474 of which appear two
years and 729 of which appear three consecutive years. Altogether,
we are faced with 4097 observations. We use the travel survey infor-
mation, which is recorded at the level of the automobile, to derive the
dependent and explanatory variables required for estimating each of
the four variants of the rebound effect. The two dependent variables,
which are converted into monthly figures to adjust for minor varia-
tions in the survey duration, are the total monthly distance driven
in kilometers (Definitions 1, 2 and 4) and the total monthly liters of
fuel consumed (Definition 3). The three explanatory variables for
identifying the direct rebound effect are the kilometers traveled per
liter (Definition 1), the price paid for fuel per kilometer traveled (Def-
inition 2), and the fuel price per liter (Definitions 3 and 4).*

The suite of control variables selected for inclusion in the model
measure the socio-economic attributes that are hypothesized to influ-
ence the extent of motorized travel. These capture the demographic
composition of the household, its income, the surrounding population
density, and dummies indicating the availability of multiple cars,
whether the household undertook a vacation with the car during
the survey period, and whether any employed member of the house-
hold changed jobs in the preceding year. Table 1 contains the defini-
tions and descriptive statistics of all the variables used in the
modeling.

5. Empirical results

To provide for a reference point for the results obtained from a
quantile regression, we first report in Table 2 the random-effects esti-
mates of the model specifications corresponding to the four rebound
definitions presented in Section 2. In line with our reasoning in

4 The price series was deflated using a consumer price index for Germany obtained
from DESTATIS (2010).

Table 1

Variable definitions and descriptive statistics.
Variable name Variable definition Mean Std.

Dev.

s Monthly kilometers driven 1546 1146
e Monthly fuel consumption in liters 94.01 62.86
n Kilometers driven per liter 1297 299
Ds Real fuel price in € per kilometer 0.08 0.02
De Real fuel price in € per liter 1.01 0.5
# driving licences Number of driving licences in a household 176  0.75
# employed Number of employed household members 1.03 0.86
vacation with car  Dummy: 1 if household undertook 020 -

vacation with car during the survey period

children Dummy: 1 if children younger 033 -
than 18 live in a household
job change Dummy: 1 if an employed household member
changed jobs within the preceding year 013 -
income Real Household income in 1,000 € 2,500 803
multi-car Dummy: 1 if an household has more than one 035 -
households car
population People in 1,000 per square km in the county in 0.834 1.004
density which the household is situated

Section 3, we refrain from reporting the fixed-effects estimates,
which are largely similar to the estimated random effects for the
fuel prices, but are statistically insignificant for almost all other vari-
ables included; this is clearly the result of very low variability of
time-persistent variables, such as the presence of children or the
number of licensed drivers. Not surprisingly, a Hausman test rejects
the equality of the random- and fixed-effects coefficients.>

Moreover, we perform the classical Breusch and Pagan (1979) test
to examine the superiority of the random-effects model over an OLS
estimation using pooled data. The test statistic y*(1)=45.1 of this
Lagrange multiplier test clearly rejects the null hypothesis of no het-
erogeneity among households, Hy:Var(§;) =0, which is also con-
firmed by the test statistics that result if the normality assumption
underlying the Breusch-Pagan test is dropped. According to the dis-
cussion of Section 3, these test results of heterogeneity also indicate
that quantile regression methods may provide for insights that go be-
yond those given by both the OLS and random-effects estimates
(Koenker and Hallock, 2001:152).

Several features of the results presented in Table 2 bear highlight-
ing. First, while we prefer the model specification related to Defini-
tion 4 for reasons presented in Section 2, its estimated rebound
effect of 57% is similar to that of Definitions 1 and 2, suggesting that
some 57% of the potential energy savings due to an efficiency im-
provement is lost to increased driving. Particularly small is the differ-
ence in the estimated coefficient of In(p.) for the model specifications
pertaining to Definition 1 and 4, which solely differ in the inclusion of
the likely endogenous variable efficiency.

Second, also of note is that the estimates fit to the range of 58% to
59% estimated by Frondel et al. (2008) for the sub-sample of single-
vehicle German households observed between 1997 and 2005. Not
least, it bears noting that the estimated rebound effects and fuel
price elasticities are considerably higher than many estimates
reported elsewhere in the literature. A key reason for this outcome
is that the elasticities from household-level data are generally larger
than those from aggregate time-series data (Wadud et al., 2010:65).
In fact, the fuel price elasticity of travel demand of —0.57 fits well
to the results of numerous household-level studies reported by
Wadud et al. (2010:69).

Third, with a magnitude of about — 0.9, the elasticity estimate of
fuel consumption with respect to fuel price changes, and hence

5 Following the method presented in Frondel and Vance (2010b), we also imple-
mented a modified Hausman test that allows comparison of individual coefficients be-
tween the fixed- and random effects estimators. Using this test, we failed to reject the
equality of the coefficients of the variables In(p.), In(ps), and In(u).
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Table 2
Random-effects estimates for the rebound based on Definitions 1 to 4°
Definition 1 Definition 2 Definition 3 Definition 4
Dependent variable In(s) In(s) In(e) In(s)
Coefficients Std. Errors Coefficients Std. Errors Coefficients Std. Errors Coefficients Std. Errors
In(pe) ¥ 0555 (0.062) - - **_0.903 (0.067) 0574 (0.063)
In(ps) - - **_ 0459 (0.040) - - - -
In(w) **0.418 (0.051) - - **_0.529 (0.057) - -
children **0.077 (0.027) **0.080 0.027) **0.084 (0.028) *0.065 (0.027)
logged income **0.094 (0.032) **0.101 0.032) *0.082 (0.034) *0.077 (0.032)
# driving licenses **0.084 (0.019) **0.085 0.019) *0.035 (0.017) **0.079 (0.019)
# employed **0.125 (0.016) **0.125 0.016) **0.108 (0.016) **0.128 (0.016)
job change 0.044 (0.028) 0.044 (0.028) 0.050 (0.030) 0.051 (0.029)
vacation with car **0.248 (0.020) **0.249 0.020) **0.340 (0.021) **0.252 (0.020)
population density **_0.068 (0.013) **_ 0,068 0.013) **_0.055 (0.013) **_0.073 (0.013)
multi-car households **0.444 (0.028) **0.444 0.028) **_0.091 (0.028) **0.456 (0.028)
constants 6782 (0.246) **6.819 0.245) 0423 (0.259) ** 6,059 (0.235)
Observations used 4,097 4,097 4,097 4,097

*denotes significance at the 5%-level and ¥ at the 1%-level, respectively.

2 To correct for the non-independence of repeated observations from the same households over the years of the survey, observations are clustered at the household level and the

presented standard errors reflect this survey design feature.

rebound Definition 3, is much larger than the respective elasticity es-
timates of kilometers traveled. This estimate replicates a result com-
monly found in the literature: that the fuel price has a much
stronger influence on fuel consumption than on the number of kilo-
meters driven (Graham and Glaister, 2004:272).

Fourth, from estimating the specification associated with Defini-
tion 1, it follows that the impact of efficiency improvements on trav-
eled distance is of the same order as the effect of lowered fuel prices.
In fact, with a test statistic of y*(1)=2.77, we cannot reject the null
hypothesis Hy: o, = — o, for a significance level of 5%. The assump-
tion underlying Hy is intuitive and frequently invoked in the litera-
ture, but rarely tested (Sorrell et al., 2009:1360): for constant fuel
prices pe, raising efficiency p should have the same effect on the ser-
vice price ps, and hence on the distance traveled, as falling fuel prices
De given a constant efficiency p. Hence, there is no reason, neither on a
theoretical nor an empirical basis, to assume that Definitions 1 and 2
yield divergent results for the rebound effect.

Ultimately, while Definition 1 would suggest a rebound effect of
42%, from a statistical point of view provided by testing Hy, it is equal-
ly warranted to take the negative of the fuel price elasticity estimate,
i. e. 0.56, as an estimate of the rebound effect, indicating that the re-
bound estimates are of a similar magnitude across all definitions ex-
cept for Definition 3. As the comparison of the estimates from
Definitions 1 and 4 reveals, omitting the likely endogenous variable
1 has hardly any effect on the estimation results, particularly on the
fuel price coefficient estimates. The empirical reason for this outcome

is that efficiency p and contemporaneous real fuel prices p. are
virtually uncorrelated, with an empirical correlation coefficient of
-0.015.

To further analyze the robustness of our results and accommodate
potential sources of heterogeneity in the estimated fuel price elastic-
ities and rebound effects, several additional models were explored.
We began by estimating the same specifications, but limiting the
sample to single-car households. The estimation results reported in
Table 3 indicate that the travel demand responsiveness of single-car
households to fuel prices is somewhat more pronounced than that
for the whole sample including multi-car households. The lower
responsiveness of multi-car households may be explained by the
fact that their household members are able to choose among the
most efficient cars for their traveling purposes, thereby largely main-
taining their travel intensity. This explanation is consistent with our
finding that the fuel consumption responsiveness to fuel prices is
somewhat reduced, from —0.9 to —0.8, when the sample is limited
to single-car households.

There are additional discrepancies emerging from the single-car
sample: While the presence of children, for example, positively af-
fects both travel demand and fuel consumption for the whole sample,
this variable does not play a significant role in determining the travel
behavior of single-car households. This may be due to the fact that
these households prioritize car use for commuting, requiring children
to use public transport systems more frequently. Conversely, the
dummy variable indicating a job change in the previous year has a

Table 3
Random-effects estimates for single-car households.
Definition 1 Definition 2 Definition 3 Definition 4
Dependent variable In(s) In(s) In(e) In(s)
Coefficients Std. errors Coefficients Std. errors Coefficients Std. errors Coefficients Std. errors
In(pe) **_ 0676 (0.079) - - **_ 0810 (0.078) 0711 (0.082)
In(ps) - - **_0.620 (0.050) - - - -
In(u) **0.594 (0.067) - - **_0.467 (0.072) - -
children 0.061 (0.037) 0.062 (0.037) 0.068 (0.036) 0.054 (0.038)
logged income 0.015 (0.035) 0.018 (0.034) 0.007 (0.034) —0.005 (0.035)
# driving licenses **0.073 (0.022) **0.074 (0.022) **0.060 (0.023) **0.062 (0.023)
# employed **0.142 (0.021) **0.142 (0.021) **0.137 (0.020) **0.143 (0.021)
job change *0.097 (0.040) *0.097 (0.040) **0.112 (0.039) *0.107 (0.042)
vacation with car **0.312 (0.024) **0311 (0.024) **0.321 (0.025) **0.326 (0.026)
population density **_0.058 (0.015) **_0.057 (0.015) **_0.059 (0.015) **_0.063 (0.015)
constants 7711 (0.265) 7737 (0.262) ** 3,064 (0.271) ** 6,645 (0.258)
Observations used 2,660 2,661 2,660 2,660

* denotes significance at the 5%-level and ** at the 1%-level, respectively.



466

statistically significant effect only for the single-car households,
which substantiates the logic that such households use the car pri-
marily for commuting purposes.

Aside from exploring differences across single- and multi-car house-
holds, we followed the lead of Wadud et al. (2010) in investigating het-
erogeneity of fuel price elasticities by analyzing the heterogeneity of the
rebound effect with respect to income, the existence of multiple cars
within a household, and residence in rural or urban areas. To this end,
each of these variables was interacted with fuel prices to allow for dif-
ferential elasticities. After exploring several specifications that included
the interactions individually and jointly, we found no evidence for sta-
tistically significant effects on the interaction terms.

This contrasts with the findings of studies that allow for heteroge-
neous responses using US data, which have generally uncovered sta-
tistically significant differential effects. Kayser (2000), for example,
finds that the price elasticity is greater at higher income levels,
while West (2004) and Wadud et al. (2010) find greater price respon-
siveness among low-income households. The absence of heterogene-
ity found here suggests that poorer households bear a relatively
higher burden from fuel price increases than wealthy households.

Yet another source of heterogeneity may relate to driving-
intensity itself: to the extent that those who drive more are more de-
pendent on car travel, we would expect them to exhibit less respon-
siveness to changes in the cost of driving than those who drive less.
Drawing on Definition 4, this hypothesis can be tested by referencing
the results of a quantile regression, reported in Table 4. In fact, as
Table 4 illustrates, there is some substanial heterogeneity in the re-
bound depending on the households' travel intensity. The fuel price
elasticity of about —0.90 in the lowest decile is 61% lower than the
estimate of —0.56 in the most upper decile, confirming that the mag-
nitude of the rebound is substantially larger for households that drive
less. In this example, an F-test statistic of F(1;4,087)=6.51 confirms
significantly different coefficients at the 5% level.

Moreover, as the F-Test results in Table 5 show, the estimated
rebound at the 10%-quantile is significantly different from the respec-
tive coefficient estimates from the 40% quantile onwards. Further
insight into this pattern can be gleaned from Fig. 1, which shows
the quantile regression estimates along with the estimate obtained
from a pooled OLS regression. While the lower responsiveness of
more car-reliant households to fuel prices changes is clearly evident
from the plot of quantile estimates, in statistical terms the degree of
heterogeneity appears rather moderate: With some exceptions at the
upper and lower ends, most of the point estimates from the quantile
regressions fall within the 95% confidence interval of the OLS estimate.

6. Summary and conclusion

Because increases in fuel efficiency effectively decrease the unit
cost of driving, their effectiveness in reducing emissions may be offset
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Table 5

F-tests for identical decile coefficients for the rebound effect.
Quantiles  10% 20% 30%  40%  50% 60% 70% 80% 90%
10% - - - - - - - - -
20% 147 - - - - - - - -
30% 3.54 134 - - - - - - -
40% 401 178 037 - - - - - -
50% **666 *406 251 163 - - - - -
60% **g58 *587 422 321 122 - - - -
70% **818 *544 403 304 112 013 - - -
80% **11.15 **800 *658 *512 326 160 126 - -
90% *651 373 227 142 042 001 002 093 -

* denotes significance at the 5%-level and ** at the 1%-level, respectively. The critical
values are F(1;4,087)=3.84 and F(1;4,087) = 6.66, respectively.

by increased demand for car travel. Although the existence of this so-
called rebound effect has been recognized for some time (Crandall,
1992), there still remains much debate as to its magnitude. With
the European Union increasingly relying on efficiency standards as a
climate protection tool in the transport sector, this debate has taken
on increased relevancy.

Drawing on household-level data from Germany, the present
study employs panel and quantile regression techniques to estimate
the magnitude of the rebound effect, as well as to explore the degree
of its heterogeneity across households. Contrasting with Wadud et
al.'s (2010) analysis of US-based data, we find no evidence for differ-
ential rebound effects by income level, geographical location, or the
number of cars owned. Results from the quantile regression, howev-
er, do suggest some heterogeneity according to driving intensity,
with the estimated rebound ranging from a low of 50% in the 80%-
quantile to a high of 90% in the 10%-quantile. Evidently, reduced trav-
el cost causes households with an already high demand for automo-
tive service to extend their demand to a lesser degree than
households with low automotive mobility.

From a policy perspective, the fact that the estimated rebound is
relatively high irrespective of driving intensity calls into question
the effectiveness of efficiency standards as a pollution control instru-
ment. Specifically, the median regression rebound estimate amounts
to 62%, which is just slightly higher in magnitude than the estimate
of 57% from the corresponding random-effects specification. More-
over, these rebound estimates are virtually of the same order as
those obtained by Frondel et al. (2008), who used an abridged version
of the current data set that extended to the year 2005. Since that time,
annually averaged fuel prices climbed another 9% to reach a peak in
2008, followed by a drop of 9% in the following year (ARAL, 2011).
These fluctuations appear to have had no bearing on a key conclusion
emerging from the data, namely that some 60% of the potential
energy saving from efficiency improvements in Germany is lost to
increased driving.

Table 4
Quantile regression results for the specification related to Definition 4.
Qio(In(s)) Qso(In(s)) Q7o(In(s)) Qoo(In(s))
Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors
In(pe) **_0.898 (0.116) **_0.714 0.076) **_0.551 (0.080) **_0.561 (0.088)
children **0.129 (0.045) *0.060 0.029) —0.015 (0.032) —0.048 (0.033)
logged income 0.050 (0.068) **0.183 0.042) **0.170 (0.045) 0.071 (0.049)
# driving licenses **0.197 (0.035) **0.103 0.018) 0.024 (0.019) 0.032 (0.021)
# employed **0.208 (0.031) **0.160 0.016) **0.149 (0.018) **0.129 (0.021)
job change —0.053 (0.055) **0.079 0.035) **0.107 (0.031) **0.099 (0.042)
vacation with car **0.380 (0.044) ** 0332 0.026) **0.249 (0.027) **0.152 (0.030)
inhabitant density **_0.081 (0.015) **_0.078 0.011) **_0.060 (0.015) **_0.043 (0.013)
multi-car households **0.377 (0.046) **0.465 0.029) **0478 (0.032) **0.539 (0.038)
constants **5203 (0.478) ** 4902 0.307) ** 5746 (0.330) ** 6.880 (0.358)

* denotes significance at the 5%-level and ** at the 1%-level, respectively. Standard errors are calculated using bootstrap methods. The panel structure of the data is not exploited, as

panel quantile methods are fairly new. Observations used: 4,097.
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Fig. 1. Comparison of the OLS and quantile regression results for the rebound effect
according to Definition 4.

On the basis of these findings, the European Commission's
expressed reservations with reliance on fuel excise taxes (COM,
2007) coupled with a corresponding emphasis on per-kilometer
emissions reductions as a key instrument for reducing total emissions
from transport should be met with skepticism. We would instead
concur with Sterner (2007) that fuel taxes should continue to play
an important role in climate policy, but should potentially be coupled
with other measures that reduce the burden to the poor, such as
lower payroll taxes. Unlike fuel efficiency standards, fuel taxes direct-
ly confront motorists with the cost of driving, which not only encour-
ages the purchase of more fuel-efficient vehicles, but also has an
immediate impact on driving behavior.
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